
Asta4D Framework User Guide

Rui Liu
Shunsuke Otani

Asta4D User Guide

ii

Table of Contents

I. Introduction .. 1
1. Overview .. 2

1.1. Why Asta4D .. 2
1.2. How Asta4D helps us ... 2
1.3. What does the name of "Asta4D" mean .. 3

II. User Guide ... 4
2. Flexible template ... 5

2.1. Inheritable template .. 5
2.2. Parametrized embedding .. 6

3. Renderer: easy to use, secure, testable ... 8
3.1. Split rendering logic from template .. 8
3.2. Render data to page .. 9
3.3. Immune from cross-site hole ... 11
3.4. Test your rendering logic .. 11

4. View first URL mapping and variable injection .. 12
4.1. View first .. 12
4.2. The grammer of URL rule and path variable .. 12
4.3. Variable Injection .. 13

5. Side effect and request handler ... 16
5.1. The role with responsibility to http request: Request Handler 16
5.2. Side effect of system operations ... 16
5.3. Isolate side effect and multi thread rendering ... 16

6. Impement request handler and url mapping .. 18
6.1. @RequestHandler .. 18
6.2. delcare url rule for request handler ... 18
6.3. Default request handler .. 20
6.4. Global forward/redirect .. 21

7. Advanced usage of request handler ... 23
7.1. Advanced MVC architecture .. 23
7.2. Normalize page url patterns .. 23
7.3. Restful and ajax ... 25
7.4. Handle static resouce files .. 27
7.5. Handle generic path template files .. 28

8. Built in form flow ... 30
8.1. Startup ... 30

Form and form field .. 30
Form handler .. 31
HTML template of form ... 37
Form snippet ... 39
Cascade form POJO and array field .. 40

8.2. Advanced ... 40
Validation .. 41
Message rendering ... 41
Customize form field annotation ... 41
A sample of defining a new flow rule ... 41

9. Best practice ... 42
9.1. Division of responsibilities between request handler and snippet 42

Asta4D User Guide

iii

Do update by request handler ... 42
Normalize page condition by request handler ... 42

9.2. Common usage of form flow ... 44
9.3. The best way of implementing a snippet .. 44

Perform queries as simple as possible ... 45
Make use of ParallelRowRender .. 45
Cache your data ... 45
Avoid duplicated query .. 46
Prepare snippet instance(set default value) by InitializableSnippet 46
"x-" convention selector ... 46
Remove contents rather than add contents for conditional rendering 47

III. Reference .. 48
10. Details of Template ... 49

10.1. Supported tags ... 49
afd:extension ... 49
afd:block ... 49
afd:embed ... 51
afd:snippet .. 51
afd:group .. 52
afd:comment ... 52
afd:msg ... 53

10.2. Additional ... 53
11. Details of snippet class ... 57

11.1. Rendering APIs .. 57
Create and add Renderer instance .. 57
CSS Selector .. 58
Render text ... 63
Render DOM attribution ... 63
Clear an Element .. 65
Render raw Element ... 66
Arbitrary rendering for an Element ... 66
Recursive rendering .. 67
Debug renderer ... 68
Missing selector warning ... 68
List rendering .. 69

11.2. Other things about snippet and rendering .. 71
Nested snippet .. 71
InitializableSnippet ... 72
Component rendering .. 72
SnippetInterceptor ... 74
SnippetExtractor .. 74
SnippetResolver .. 74
SnippetInvoker .. 74

12. Variable injection ... 75
12.1. Context .. 75

Context/WebApplicationContext ... 75
Scope ... 76
ContextBindData ... 77

12.2. Injection ... 78
@ContextData .. 78

Asta4D User Guide

iv

@ContextDataSet ... 79
ContextDataFinder .. 81
DataConvertor ... 81
ContextDataHolder .. 81

13. URL rule ... 82
13.1. Rule apis ... 82

UrlMappingRuleInitializer ... 82
Handy rules .. 83

13.2. Request handler result process ... 85
Content provider ... 86
Result transforming ... 86
Request handler chain .. 86

14. details of form flow .. 87
15. i18n .. 88

15.1. message stringization ... 88
I18nMessageHelper ... 88
MessagePatternRetriever ... 89
Default locale .. 89
afd:msg ... 90

15.2. file search order ... 92
16. Asta4dServlet and configuration ... 94

16.1. Asta4dServlet ... 94
16.2. Configuration file .. 96

17. Integration with Spring ... 98
17.1. Integrate with Spring IOC ... 98
17.2. Integrate with Spring MVC .. 101

Part I. Introduction
Asta4D is a web application framework which is friendly to designer and flexible to developer. Asta4D
affords high productivity than traditional MVC architecture by View First architecture. It also allows front-
end engineers and back-end engineers work independently without interference by separating rendering
logic from template files.

Asta4D is inspired by lift which is a famous scala web application framework and it is developed by
astamuse company Ltd. locating at Tokyo Japan. We are concentrating on global innovation support
and developing Asta4D for our own services. Currently, Asta4D is driving our new service development.

Asta4D User Guide

2

1. Overview

1.1 Why Asta4D

In the past decade, plenty of Java based web application frameworks are generated. Especially the
MVC architecture and JSP tag libs (or other traditional template technologies) that has greatly released
our productivity. But unfortunately, we are still suffering from the following situations:

• The designers or front-end engineers are keeping complaining the mixed-in dynamic code, as they
disturb their efforts of redesigning the page style or structure. And in the mean time, the back-end
developers are also complaining that the front-end guys break the working page frequently, because
redesign or the new design is hard to merge due to the huge cost of source refactorying.

• The developers are complaining about the poor functionalities of template language which they are
using and tired from the various magic skills for complex rendering logic.

• The developers are discontented with the counterproductivity of traditional MVC architecture and
desire a more efficient approach.

1.2 How Asta4D helps us

Asta4D is our solution to combat those issues. Thanks to lift, from where we learn a lot. We designed
Asta4D complying with the following points:

• Separate template and rendering logic

Asta4D affords front-end engineers a friendly environment by separating rendering logic from template
files which are pure html files. At the mean time, back-end engineers can use the powerful Java
language to implement the rendering logic without being suffering from the "poor and sometimes
magic" template languages.

• Testable rendering logic

All of the rendering logic in Asta4D is testable and developers can simply test them by writing simple
junit cases, which could replace over than half of selenium tests

• High security of being immune from cross-site(XSS/CSRF)

Asta4D is, by nature, immune from cross-site(XSS/CSRF) problems. You do not need to take care
of cross-site any more. All the rendered value would be escaped by default and your clients have no
chance to put malicious contents to your server.

• View first

Asta4D also affords higher productivity than traditional MVC architecture by View First mechanism.
And it is also easier to change than traditional MVC architecture.

• Isolate side effect with request handler

Asta4D imports the conception of "side-effect" from functional programming languages and separating
the "side-effect" by request handlers, which afford more flexibility on page rendering because the view
layer is side-effect free now. Therefore Asta4D allows parallel page rendering in multiple threads as
a built-in feature.

Asta4D User Guide

3

• Advanced MVC

Asta4D affords developers a evolved MVC architecture which is more clarified for the duty of each
application layer than the traditional MVC architecture.

1.3 What does the name of "Asta4D" mean

The name of Asta4D is from our company's name: astamuse. We explain the "4D" as following ways:

• For Designer

Asta4D consider the design friendliness as the most important factor of itself. We hope web designers
can fulfil their maximum potential of creativity without squandering their time on the back-end
technologies which they could never be adept at.

• For developer

We hope Asta4D can help developers to achieve their work more easily. Developers would never be
afflicted with complex rendering logic because they can use powerful Java language to do whatever
they want since the rendering has been split from template files. View first also releases developers
from the cumbersome MVC architecture, now they have more time to have a cup of coffee.

• 4 Dimension

We believe that Asta4D can act as a wormhole that connects the front-end and the back-end. We can
move quicker by Asta4D just like we are going through the 4 dimensional space.

Part II. User Guide

Asta4D User Guide

5

2. Flexible template

2.1 Inheritable template

The template of Asta4D is inheritable, child template can override, append or insert content to certain
place in parent template. Let's see a sample:

<html>

 <head>

 <afd:block id="block1">

 <link href="parent1.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <afd:block id="block2">

 <link href="parent2.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <title>extension sample</title>

 </head>

 <body>

 <afd:block id="content">content</afd:block>

 </body>

</html>

Example 2.1 parent.html

Child template can declare inheritance by "afd:extension" and overriding can be declared by "afd:block":

<afd:extension parent="parent.html">

 <afd:block append="block1">

 <link href="child1.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <afd:block insert="block2">

 <link href="child2.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <afd:block override="content ">

 <div>hello</div>

 <afd:embed target="/templates/embed.html" ></afd:embed>

 </afd:block>

</afd:extension>

Example 2.2 child.html

"afd:block" support 3 types action: insert, append and override.

In the Example 2.2, “child.html”, there is an additional declaration of including by "afd:embed" which
embed the target file to the current place of the current file. Let's see the embed.html:

Asta4D User Guide

6

 <afd:block append="block1">

 <link href="embed.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <div>good embed</div>

Example 2.3 embed.html

The "afd:block" declaration in the embeded target file is available after the content of target file is inserted
into the Example 2.2, “child.html”, all "afd:block" tags will be treated as overriding(inserting/appending)
to the parent template and the contents out of "afd:blocks" will be inserted at the place where the
"afd:embed" is declared.

After all the template files are merged, we will get the following result:

<html>

<head>

 <!-- block1 -->

 <link href="parent1.css" rel="stylesheet" type="text/css" />

 <link href="child1.css" rel="stylesheet" type="text/css" />

 <link href="embed.css" rel="stylesheet" type="text/css" />

 <!-- block2 -->

 <link href="child2.css" rel="stylesheet" type="text/css" />

 <link href="parent2.css" rel="stylesheet" type="text/css" />

 <title>extension sample</title>

</head>

<body>

 <!-- content -->

 <div>hello</div>

 <!-- embed -->

 <div>good embed</div>

</body>

</html>

Example 2.4 The result of template merging:

2.2 Parametrized embedding

Extra parameters can be passed to the target embeded file by specifying the DOM attribute of
"afd:embed" when we are embeding files.

Asta4D User Guide

7

<afd:embed target="/xxx/showList.html" limit="30"></afd:embed>

Example 2.5 Sample of parametrized embeding:

The "limit" parameter can be accessed by variable injection in the rendering logic of showList.html, by
which we can parameterize the embeding. This feature is very useful for creating a page component
which encapsulates common html snippets and can be controlled by the passed parameters. Basically,
embeding a file in a template file is similar to calling a function with(or without) arguments. Especially, the
parameters are not limited to specified static values in the template file, they can be valued dynamicaly
at runtime too. Further, the type of parameters is not restricted to the stringizable types such as String or
Integer/Long, arbitrary Java type can be specified dynamically at runtime. See the reference of Renering
logic to learn more details.

Simply, the idea of Asta4D's template system is akin to the traditional OOP model, the parent and child
templates can be regarded as parent/child classes and the block can be viewed as a overridable virtual
method. The embed external files can be also treated as funcation calling. As a matter of fact, since
arbitrary type of value can be passed to the embed files, there is actually no difference between Asta4D's
embeding and common function calling.

Asta4D User Guide

8

3. Renderer: easy to use, secure,
testable

3.1 Split rendering logic from template

There is no dynamic code in a template file. An Asta4D template file is always a pure HTML file which can
be easily maintained by front-end developers, it is very design friendly and we can reduce the workload
for source refactoring by over 90%.

• Declare snippet class in template file

<section>

 <article>

 <div afd:render="SimpleSnippet">dummy text</div>

 <afd:snippet render="SimpleSnippet:setProfile">

 <p id="name">name:dummy name</p>

 <p id="age">age:0</p>

 </afd:snippet>

 </article>

</section>

Example 3.1 Sample of snippet declaration:

The "afd:render" attribute in div tag declares a Java class which is in charge of the concrete rendering
logic, such Java class is usually called as a snippet class. A snippet class can be declared by
a "afd:snippet" tag too, as you have seen in above sample. The rendering logic is secluded to
independent Java classes by snippet declaration and it is not necessary to learn any new template
language for back-end developers. The back-end guys can achieve all the rendering logic easily by
powerful Java language which they have been adept to, no learning costs, no magic codes, succinct
Java source only.

• Implement a snippet class

Asta4D User Guide

9

public class SimpleSnippet {

 public Renderer render(String name) {

 if (StringUtils.isEmpty(name)) {

 name = "Asta4D";

 }

 return Renderer.create("div", name);

 }

 public Renderer setProfile() {

 Renderer render = Renderer.create();

 render.add("p#name span", "asta4d");

 render.add("p#age span", 20);

 return render;

 }

}

Example 3.2 Sample of snippet class:

The Renderer class is provided by framework to declare rendering actions. Renderer uses traditional
CSS selector to reference the rendering target and receive the rendering value at the same time,
amazing and powerful.

If the above template file and snippet class are executed, we would get the following result:

<section>

 <article>

 Hello Asta4D

 <p id="name">name:asta4d/span></p>

 <p id="age">age:20</p>

 </article>

</section>

Example 3.3 Result of snippet execution:

Asta4D introduces 4 extra tags to the html template file: afd:extension, afd:block, afd:embed,
afd:snippet, which will not disturb most html editors, accordingly Asta4D is extremely friendly to front-
end engineers. On the other hand, we can see that all the rendering logic is fulfiled by Java code and
the back-end engineers can compose their back-end logic and rendering logic very smoothly without
magic skills and extra learning costs, which means highly boost of productivity.

3.2 Render data to page
Be careful of "ElementUtil.parseAsSingle" which would cause cross-site issues. Basically the
parseAsSingle api is not recommended for common use. See more atSection 3.3, “Immune from cross-
site hole”.

• In Asta4D, all the rendering logic is declared by a Renderer class which accepts various types as
rendering value.

Asta4D User Guide

10

Renderer render = Renderer.create();

render.add("#someIdForInt", 12345);

render.add("#someIdForLong", 12345L);

render.add("#someIdForBool", true);

render.add("#someIdForStr", "a str");

render.add("#someIdForNull", (Object) null);

render.add("#someIdForClear", Clear);

// NOTE: parseAsSingle is not recommended to use

Element newChild = ElementUtil.parseAsSingle("<div></div>");

render.add("#someIdForElementSetter", new ChildReplacer(newChild));

render.add("#someIdForElement", ElementUtil.parseAsSingle("<div>eee</div>"));

render.add("#someIdForRenderer", Renderer.create("#value", "value"));

Example 3.4 Sample usage of Renderer

• List of data can be rendered via Renderer too:

Renderer render = Renderer.create()();

render.add("#someIdForInt", Arrays.asList(123, 456, 789));

render.add("#someIdForLong", Arrays.asList(123L, 456L, 789L));

render.add("#someIdForBool", Arrays.asList(true, true, false));

render.add("#someIdForStr", Arrays.asList("str1", "str2", "str3"));

// NOTE: parseAsSingle is not recommended to use

Element newChild1 = ElementUtil.parseAsSingle("<div>1</div>");

Element newChild2 = ElementUtil.parseAsSingle("<div>2</div>");

render.add("#someIdForElementSetter", Arrays.asList(new ChildReplacer(newChild1), new

 ChildReplacer(newChild2)));

render.add("#someIdForElement", Arrays.asList(newChild1, newChild2));

render.add("#someIdForRenderer", Arrays.asList(123, 456, 789), new

 RowRenderer<Integer>() {

 @Override

 public Renderer convert(int rowIndex, Integer obj) {

 return Renderer.create("#id", "id-" + obj).add("#otherId", "otherId-" + obj);

 }

});

Example 3.5 Sample of list rendering

• DOM attribution can be done too:

Asta4D User Guide

11

render.add("#id", "+class", "yyy");

render.add("#id", "-class", "zzz");

render.add("#id", "+class", "xxx");

render.add("#id", "value", "hg");

render.add("#id", "href", null);

render.add("#X", "value", new Date(123456L));

Example 3.6 Sample of DOM attribution rendering

3.3 Immune from cross-site hole

The previous samples show us that all the operations to DOM are delegated by Renderer except create
DOM from String value by "ElementUtil#parseAsSingle". As a matter of fact, all the delegated operations
cause all the rendering values are escaped by force, which means that your system is, by nature,
immune from cross-site problems if there is no "ElementUtil#parseAsSingle" calling in your system. You
do not need to be wary of illegal characters by from the clients since all the values will be escaped as
HTML compulsorily.
On the other hand, according to our practice, it is rarely that you have to call “ElementUtil.parseAsSingle”
to generate the rendering content from a raw HTML string, so just take care of your usage of this
exceptional api then you can say bye-bye to the cross-site holes.

3.4 Test your rendering logic

Testing web page is always a complex task and we usually verify rendering results by selenuim which
is as a common technology. By Asta4D, testable Renderer can replace over than half of selenium tests
to simpler junit tests.

According to the previous samples, all the rendering logic is holded by an instance of Renderer class, so
simply, we can verify almost rendering logic by testing the returned Renderer instance from the snippet
method.

RendererTester tester = RendererTester.forRenderer(render);

Assert.assertEquals(tester.get("#someIdForInt"), 12345);

Assert.assertEquals(tester.get("#someIdForLong"), 12345L);

Assert.assertEquals(tester.get("#someIdForBool"), true);

Assert.assertEquals(tester.get("#someIdForStr"), "a str");

Assert.assertEquals(tester.get("#someIdForNull"), null);

Assert.assertEquals(tester.get("#someIdForClear"), Clear);

More samples can be found in source1

Example 3.7 Sample RendererTester

1 https://github.com/astamuse/asta4d/blob/develop/asta4d-core/src/test/java/com/astamuse/asta4d/test/unit/
RenderTesterTest.java

https://github.com/astamuse/asta4d/blob/develop/asta4d-core/src/test/java/com/astamuse/asta4d/test/unit/RenderTesterTest.java
https://github.com/astamuse/asta4d/blob/develop/asta4d-core/src/test/java/com/astamuse/asta4d/test/unit/RenderTesterTest.java
https://github.com/astamuse/asta4d/blob/develop/asta4d-core/src/test/java/com/astamuse/asta4d/test/unit/RenderTesterTest.java

Asta4D User Guide

12

4. View first URL mapping and
variable injection

4.1 View first

In Asta4D, we follow the principle of view first rather than the tradition MVC architecture. The declaration
of URL rules does not need to include a controller and one url can be mapped to one template file
directly, which is called as View First.

In Asta4D, URL mapping rules are not managed in a configuration file. The Framework provides a sort
of DSL by a set of convinient APIs, which means the declaration of Asta4D's URL mapping rule is
programmable and it affords much flexibility than the way with a static configuration file.

Users declare their own URL rules via implementing the interface UrlMappingRuleInitializer of Asta4D:

public class UrlRules implements UrlMappingRuleInitializer {

 @Override

 public void initUrlMappingRules(UrlMappingRuleHelper rules) {

 //@formatter:off

 rules.add(GET, "/")

 .redirect("/app/index");

 rules.add(GET, "/redirect-to-index")

 .redirect("p:/app/index");

 rules.add("/app/", "/templates/index.html");

 rules.add("/app/index", "/templates/index.html");

 rules.add("/app/{name}/{age}", "/templates/variableinjection.html")#

 ...

 //@formatter:on

 }

}

Example 4.1 Sample of declaring url rules:

4.2 The grammer of URL rule and path variable

The grammer of Asta4D's URL rule is almost the same as Spring MVC's URL mapping rule and the
parts surrounded by braces are treated as path variables which can be retrieved in following process(in
snippet classes or request handlers).

Further, extra path variables can be declared in a url rule by calling the method of "var" as following:

Asta4D User Guide

13

rules.add("/app/{name}/{age}", "/templates/variableinjection.html")

 .var("extraVar", 1234);

Example 4.2 Sample of declaring extra path variable:

4.3 Variable Injection

Asta4D implements a variable injection mechanism which is very closed to Spring MVC, all of the
instance fields and method parameters in the implementation of snippet classes can be injected
automatically by framework.

Further, all the snippet classes are singleton in request scope.In other words, there will be only one
istance of any snippet class in a single request scope regardless of how many times the snippet class
is called. Let us see some samples of variable injection in the snippet class.

public class InitSnippet implements InitializableSnippet {

 @ContextData

 private String value; // (1)

 private long id;

 private String resolvedValue;

 private int count = 0;

}

@ContextData indicates that the instance field "value" need to be injected after the instance of
InitSnippet is created. Since the snippet instance is singeleton in the current request scope, the instance
field "value" will be injected and initialized only once in the current request scope. The framework will
search a variable named "value" in all the available variable scopes and inject the found value. The
name of "value" is decided by the field name by default and can be sepcified by extra declaration(see
the following samples).

Example 4.3

public class InitSnippet implements InitializableSnippet {

 @ContextData

 private void setId(long id) { //(3)

 this.id = id;

 }

}

Instance field can be injected via setter methods too.

Example 4.4

Asta4D User Guide

14

public class InitSnippet implements InitializableSnippet {

 @Override

 public void init() throws SnippetInvokeException { //(2)

 resolvedValue = value + "-resolved";

 count++;

 }

}

The init method of InitializableSnippet is being implemented. This is not necessary but if a snippet class
implements the interface of InitializableSnippet, the init method will be called once after all the instance
fields are injected, by which customized snippet initial logic can be performed.

Example 4.5

public class InitSnippet implements InitializableSnippet {

 // (4)

 public Renderer getPathVarName(

 @ContextData(scope = WebApplicationContext.SCOPE_PATHVAR)

 int count) {

 }

}

Variable injection on snippet method. In this sample the extra search scope are delcared, which cause
framework searches a variable named "count" in the path variable scope. As the same as the injection
on instance field, the searching variable name is decided by the parameter name by default.

Example 4.6

public class InitSnippet implements InitializableSnippet {

 // (5)

 public Renderer getQueryParamName(

 @ContextData(name = "var", scope = WebApplicationContext.SCOPE_QUERYPARAM)

 String name) {

 }

}

In this sample, an extra variable name and search scope are declared, the framework will search a
variable named "var" in the request parameters.

Example 4.7

Asta4D User Guide

15

public class InitSnippet implements InitializableSnippet {

 // (6)

 public Renderer getDefaultName(String name) {

 }

}

There is a difference between instance field injection and method parameter injection. A instance field
without @ContextData annotation will not be injected, but for method paramters, all the paramters will
be injected compulsorily. In this sample, the framework will search a variable named "name" in all the
available scopes as following order:

1. HTML tag attribution(SCOPE_ATTR)

Trace back to the top tag of the current HTML document recursively. This scope is only available
to the snippet method.

2. path variable(SCOPE_PATHVAR)

3. request parameter(SCOPE_QUERYPARAM)

4. flash variable(SCOPE_FLASH)

The variables passed from one request to another request, usually acrross a redirect.

5. cookie(SCOPE_COOKIE)

6. request hearder(SCOPE_HEADER)

7. request attribute(SCOPE_REQUEST)

8. session(SCOPE_SESSION)

9. global(SCOPE_GLOBAL)

A global static variable pool

This search order is applied to the instance field injection too except that the first scope of HTML tag
attribution is not available.

Example 4.8

Asta4D User Guide

16

5. Side effect and request handler

5.1 The role with responsibility to http request: Request
Handler

Even Asta4D complies with the principle of view first, there is still a role similar with the controller in
MVC architecture, such role is called request handler. We believe that there should be a role who takes
responsiblity of a certain http request and such role can be considered as an alternative to controller
of MVC in some situations too.

According to the view first rule, a request handler can be ignored in most cases. You can also assume
that there is is a default request handler which navigates all the http requests to the corresponding
template files(The real story is more complex but you can try to understand the theory conceptually by
this way).

Now the question is when we need a request handler? Before we can answer this question, we have
to discuss the conception of "side effect".

5.2 Side effect of system operations

A system always afford users various operations such as query, update, etc. All of these operations will
affect the status of system in various ways. In Asta4D, we say that there are two types of action in a
system, one is with “side effect”, another one is without “side effect”. “actions with side effect” are ones
that will change the system status once they are performed. For instance, for the same URL, a login
request (if succeeded) will cause a client’s privilege to be changed and the client could probably get a
different page view from what the client get before login, because of which we say a login request is
an action with side effect. Another obvious example is a database update operation. Once an update
is committed, all the related clients will get a different output from the result before the update, which
is also classified as “an action with side effect”.

How about a query? We consider a query as an operation without side effect, it means that a client will
always get the same result regardless of how many times the query is executed. Some people may ask
how about counting on query times? For counting on query times, we can still split the counting and
query to two individual operations, one is with side effect and another one is without side effect.

5.3 Isolate side effect and multi thread rendering

We believe the actions with side effect should be managed seriously and we do that by putting all
the actions with side effect to request handlers so that the view layer is purified and this makes the
source more clear and maintainable. This is also means with Asta4D we can easily perform multi thread
rendering on a single page because they are now all side-effect free, which is a high light function of
Asta4D.

In traditional MVC architecture, the responsibility of controller is tangled, a controller does not only
handle the duty of altering system status(date update), but also takes the responsibility of preparing data
for view layer. We often have to expand the database session(transaction) to the view layer for handling
lazy load issue, which makes transaction management more complicated. Additionally, especially for
the pages that can be split to relatively individual blocks, hypothetically we can accelerate the page
loading by retrieving data in multi threads for each block, but in reality it is impossible due to the source

Asta4D User Guide

17

complexity and development costs. The developers still have to access each data source sequentially
to retrieve data for each block even the page is splitable as individual blocks.

For Asta4D, the logic layers of system is clarified by isolating side effects at architecture level. The
database session(transaction) does no longer need keep opening cross layers, it is clear that the duty
of request handler is altering system status but not preparing data for view layer. At the mean time, at
the view layer, acquiring data and rendering data are performed at the same time, at the same place:
We access data source and retrieve data in snippet method, and pass the data to Renderer to perform
rendering immediately in the same snippet method. Further, the complexity can be reduced drastically
because all the accesses to certain data are isolated in certain snippet methods and there is no cross
layer invoking and coupling any more.

On the other hand, we can simply perform multi thread rendering by calling each snippet method in
different threads, which is transparent to developer. Because all the side effects has been isolated in
request handler layer, we do not need to considerate sync or mutex even we are performing multi thread
rendering since the view layer is side effect free now.

Let us see how easy we can achieve parallel rendering

<div afd:render="ParallelTest$TestRender:snippetInDiv" afd:parallel>

 <div id="test">xx</div>

</div>

<afd:snippet render="ParallelTest$TestRender:snippetReplaceDiv" parallel>

 <div id="test">xx</div>

</afd:snippet>

All the snippets declared with parallel(afd:parallel) attribution will not block the http request main thread,
the http request main thread will wait for the parallel rendering after all the non-parallel rendering finished,
then merge the result and output to the client.

Example 5.1

Asta4D User Guide

18

6. Impement request handler and url
mapping

6.1 @RequestHandler

It is not complicated to implement a request handler. @RequestHandler can be used to annotate a
handle method in arbitrary Java class which will be treated as a request handler.

public class LoginHandler {

 @RequestHandler

 public LoginFailure doLogin(String flag) throws LoginFailure {

 if (StringUtils.isEmpty(flag)) {

 return null;

 }

 if ("error".equals(flag)) {

 throw new LoginFailure();

 }

 if (!Boolean.parseBoolean(flag)) {

 return new LoginFailure();

 }

 return null;

 }

}

Take a look at the parameters of the handle method, the handle method of a request handler accepts
parameter injection as same as the snippet method. More details can be found at the descriptions of
the snippet method.

Example 6.1

6.2 delcare url rule for request handler

Previously we have introduced how to forward a http request to a certain template file by url mapping.
We can declare a request handler for q http request by the same way:

Asta4D User Guide

19

rules.add("/app/handler")

 .handler(LoginHandler.class) // (1)

 .forward(LoginFailure.class, "/templates/error.html") //(2)

 .redirect(FurtherConfirm.class, "/app/furtherConfirm")//(3)

 .forward("/templates/success.html"); //(4)

Simply explain:

1. Forward the request to "/app/handler" to the request handler "LoginHandler".

2. If "LoginHandler" returns a result of "LoginFailure", forward the request to the template file "error.html".

3. If "LoginHandler" returns a result of "FurtherConfirm", redirect the current request to "/app/
furtherConfirm" by http code 302(302 is by default).

4. If "LoginHandler" does not return a meaningful result(it usually means success by a null return) ,
forward the request to the template file "success.html".

Example 6.2

More verbose details:

The handler method is used to add a request handler and accepts arbitrary type as the the parameter:
an instance of java.lang.Class or an arbitrary instance. The framework explains received parameters
by the implementation of DeclareInstanceResolver configured by WebApplicationConfiguration. Thee
default implementation provided by framework follows the following rules to explain the declaration of
request handler:

1. If an instance of java.lang.Class is specified, the instance of request handler will be created by invoke
"newInstance()" on the specified Class.

2. If a string is specified, the string will be treated as a class name and an instance of java.lang.Class
will be created by calling "Class#forName", then the instance of request handler will be created by
invoke "newInstance()" on the created Class.

3. The specified parameter will be treated as a request handler directly if it is neither a Class nor a string.
By this rule, it is interesting that we can declare an anonymous class as a request handler:

rules.add("/app/handler")

 .handler(new Object(){

 @RequestHandler

 public void handle(){

 //

 }

 });

Example 6.3

The asta4d-spring package also provides a resolver based on Spring IOC container, the request handler
instance will be retrieved by passing the specified parameter to the "Context#getBean" method of spring
container.

Asta4D User Guide

20

The forward method adds a transforming rule for the result of request handler.There must be a handler
method annotated by @RequestHandler and the returned value of the handle method is viewed as the
result of the request handler, thrown exceptions in the handle method are treated as the result too.
The framework will attempt to match the result to the expected result specified by forward method then
transforms the result to the corresponding template file(The real mechanism of result transforming is
more complicated and is explained at ...). When the matching attempt is performed, the equals method
will be used at first, if the equals method returns false and the expected result by forward method is
an instance of java.lang.Class, "Class#isAssignableFrom" will be utilized, if false again, skip the current
forward rule and do the same check on the next forward rule. A forward rule without the expected result
specified will be viewed as a default rule, if matched forward rule for a result is missing or the request
handler returns a pointless result(void declaration of handle method or returns null), the default rule will
be applied.

The redirect method follows the same rule of forward method except it will cause a 302 redirect(302 is
default, 301 can be declared) instead of forwarding to a template file.

6.3 Default request handler

You can not only declare request handler to a certain url, but also declare global request handlers which
is available to all the urls and prior to the request handlers declared on certain urls. There is a conception
of request handler chain for multi handlers, we will explain it in a later chapter.

rules.addDefaultRequestHandler(GlobalHandler.class);

rules.addDefaultRequestHandler("authcheck", AuthCheckHandler.class);

Example 6.4 Default request handler

At the second line declaration for AuthCheckHandler, an attribute can be specified at the same time,
which cause the declared request handler is only available to the rules that declared the same attribute.

rules.add("/app/handler").attribute("authcheck")

 ...

Example 6.5

In the framework's internal implementation, a static match rule table will be generated after all the url
mapping declaration finished. A global request handler that is only available to certain rules will be
configured to the the certain url rules only, by which unnecessary performance cost is avoid.

In our practice, we found that it is very inconvenient to declare necessary attribute on every rule. In most
situations, we will want to do something like configure a same default request handler to all the url paths
under "/xxx", which can be done by delcaring a non attribute default request handler which judges the
url pattern by itself, but such way will lose the performance benefit of attribute declaration. Thus, we
provide an alternative way for this situation: url rule rewrite.

Asta4D User Guide

21

rules.addRuleRewriter(new UrlMappingRuleRewriter() {

 @Override

 public void rewrite(UrlMappingRule rule) {

 if(rule.getSourcePath().startsWith("/privatedata/")){

 rule.getAttributeList().add("authcheck");

 }

 }

});

Example 6.6

Please note that, untill now all the introduced configuration for url mapping are achieved by a group of
interface called HandyRule which convert all the declaration to the instance of UrlMappingRule which
is used by framework internally. But in the url rule rewritter implementation, developers have to cope
with the raw UrlMappingRule which is difficult to understand, so complex url rewriting is not appreciated.
Basically, the scenario of url rule rewriting is only for add attributes to rules in bulk.

6.4 Global forward/redirect

Previously we mentioned that the result of a request handler will be matched in the forward declaration,
if there is no matched forward found, the global forward rule will be checked.

rules.addGlobalForward(PageNotFoundException.class, "/pagenotfound.html", 404);

The above source declares that if the result of request handler is PageNotFoundException(Exception
is treated as the result of the request handler), forward the request to pagenotfound.html by http status
code 404.

Example 6.7 Global forward

Global redirect can be declared by the same way.

rules.addGlobalRedirect(REDIRECT_TO_SOMEWHERE, "/somewhere");

Example 6.8 Global redirect

The global forward rules are applied before the default forward rule(the forward rule without result) on
certain url mapping rule.

Asta4D User Guide

22

rules.addGlobalForward(PageNotFoundException.class, "/pagenotfound.html", 404);

rules.addGlobalRedirect(REDIRECT_TO_SOMEWHERE, "/somewhere");

rules.add("/app/handler")

 .handler(LoginHandler.class)

 .forward(LoginFailure.class, "/templates/error.html")

 .redirect(FurtherConfirm.class, "/app/furtherConfirm")

 .forward("/templates/success.html");

Example 6.9

In the above sample, the result of LoginHandler will be matched by the following order:

1. LoginFailer

2. FurtherConfirm

3. PageNotFoundException

4. REDIRECT_TO_SOMEWHERE

5. (default-> "success.html")

Asta4D User Guide

23

7. Advanced usage of request handler
This chapter is to show how you can make advanced usage of request handler on various situations.

7.1. Advanced MVC architecture

Even we emphasize that Asta4D is a view first framework, it is still compatible with MVC architecture.
Further, we would say that Asta4D affords an advanced MVC architecture than traditional MVC
frameworks by the view first mechanism.

In the MVC theory, a controller would act as multi roles in a full request process, from wikipedia, it says:
"A controller can send commands to the model to update the model's state (e.g., editing a document).
It can also send commands to its associated view to change the view's presentation of the model (e.g.,
by scrolling through a document)." But those are not all in most situations, we usually have to do more
things in a controller such as querying additional assistant data for page rendering.

By traditional MVC architecture, we often have to expand the transaction from the controller layer across
to the view layer to combat the lazy load issue, which ugly structure is essentially caused by the tangled
controller which holds various unrelated duties.

It is also strange that we have to modify our controller's implementation at every time we change the
page appearance at view layer. Such situation could not satisfy us since the layers are not uncoupled
really.

We would say that the traditional controller is indeed a tangled magic container for most logics, a
controller will unfortunately be coupled to most layers in the system even our initial purpose of MVC is
to uncouple our logics. By contrast, Asta4D allows developers to really uncouple all the tangled logics
easily. Basically we could split the traditional controller's duty to following parts:

• request handler

Which takes the responsibilities of all the operations with side-effect.

• result matching in url rule

Which dispatches the request to different views according to the result from request handler

• snippet class

Which has the responsibility to render data to the page and also holds the obligation of preparing all
the necessary data for page rendering.

By above architecture, we could perfectly uncouple our logics by clarifying the obligation of each layer.
Need sample source ...

7.2. Normalize page url patterns

Commonly, we would probably have multiple path patterns for the same template file but we would
hope our snippet implementation could deal with a unified pattern, which can be simply achieved by
a request handler.

Asta4D User Guide

24

rules.add("/user/name/{name}").id("user-page")

rules.add("/user/{id}").id("user-page")

 .handler(new Object(){

 @RequestHandler

 public void preparePage(Context context, Integer id, String name){

 User user = null;

 if(id != null){

 user = queryUserById(id);

 }else if (name != null){

 user = queryUserByName(name);

 }

 if(user != null){

 //in the snippet class, a @ContextData annotation can by use to retrieve

 this value by injection

 context.setData("user-page-condition", user);

 }

 }

 }).forward("/user-page.html");

Somebody would argue that the above example is apparently a traditional MVC architecture, that is right
or wrong. For the most simple situation, if the snippet class will only show the data from entity class User
without any extra query, it is true that the above source shows a traditional MVC architecture. But for the
most situations, the page rendering would require more additional queries, which would be done at the
snippet side. Such structure is so far from the traditional MVC that we would rather to call it as view first.

Example 7.1 Normalize page url

In the above example, we do not cope with the case of user does not exist. The following source shows
how we can cope with such situation:

Asta4D User Guide

25

rules.addGlobalForward(PageNotFoundException.class, "/template/PageNotFound.html", 404);

rules.addGlobalForward(Throwable.class, "/template/UnknownError.html", 500);

rules.add("/user/name/{name}").id("user-page")

rules.add("/user/{id}").id("user-page")

 .handler(new Object(){

 @RequestHandler

 public void preparePage(Context context, Integer id, String name){

 User user = null;

 if(id != null){

 user = queryUserById(id);

 }else if (name != null){

 user = queryUserByName(name);

 }

 if(user == null){

 throw new PageNotFoundException();

 }else

 //in the snippet class, a @ContextData annotation can by use to retrieve

 this value by injection

 context.setData("user-page-condition", user);

 }

 }

 }).forward("/user-page.html");

Example 7.2 Normalize page url and PageNotFoundException

See more details at the section called “Normalize page condition by request handler”

7.3. Restful and ajax

For the request which does not require response of html files, such as restful or ajax request, request
handler can be used to cope with such situation.

There is a rest() method which does nothing on the current rule by default but can be used as a hint
to suggest that the current rule will response customized contents as a restful api. A request handler
can return a ContentProvider to supply customized response content. Details of ContenProvider can be
found at later chapters, here we only show examples of how to response customized contents.

Asta4D User Guide

26

public class UpdateHandler {

 @RequestHandler

 public ContentProvider doUpdate(String id, String content) {

 if (idExists(id)) {

 try {

 updateContent(id, content);

 return new HeaderInfoProvider();

 } catch (Exception ex) {

 HeaderInfoProvider header = new HeaderInfoProvider(500);

 header.addHeader("exception", ex.getMessage());

 return header;

 }

 } else {

 return new HeaderInfoProvider(404);

 }

 }

}

Example 7.3 Return header only response

public class GetHandler {

 @RequestHandler

 public ContentProvider get(String id) {

 Object data = getContent(id);

 if (data == null) {

 return new HeaderInfoProvider(404);

 } else {

 HeaderInfoProvider header = new HeaderInfoProvider();// default to 200

 header.addHeader("Content-Type", "application/json");

 String json = toJson(data);

 BinaryDataProvider binaryData = new BinaryDataProvider(json.getBytes());

 return new SerialProvider(header, binaryData);

 }

 }

}

Example 7.4 Return customized binary data

For json data, there is a more convenience way to response a json string to client. A json() method can
be used on rule declaration to ask the framework to convert the returned result from request handler
to a json string automatically. the above

Asta4D User Guide

27

// in rule declaration

rules.add("/get").handler(GetHandler.class).json();

//the handler implementation

public class GetHandler {

 @RequestHandler

 public Object get(String id) {

 return getContent(id);

 }

}

Example 7.5 Declare json at rule

By default, a rest rule will do nothing on the result of handler and a ContentProvider instance is
expected, by contrast, there is a built-in json transformer for rules which are declared as json. However,
developers can still register a customized result transformer for rest rules or even register a customized
json transformer to override the default built-in implementation. See details at the section called
“UrlMappingRuleInitializer”

Further, since a request handler can access HttpServletResponse instance directly, developer can do
more complex customization on HttpServletResponse instance directly.

public class XXXHandler {

 @RequestHandler

 public void handle(HttpServletResponse response) throws IOException {

 response.setStatus(200);

 response.addHeader("xxx", "");

 response.getOutputStream().write("OK".getBytes());

 }

}

Example 7.6 access HttpServletResponse directly

There are two built-in customized request handlers for handler static resouce files and mapping generic
path template files. See the next section.

7.4. Handle static resouce files

The most simple way to handling static resource files is mapping their path in web.xml then they will be
serviced by the servlet container. But Asta4D still affords a way to handle them at framework level.

Asta4D User Guide

28

rules.add("/js/**/*").handler(new StaticResourceHandler());

rules.add("/img/**/*").handler(new StaticResourceHandler("/resource/img"));

rules.add("/favicon.ico").handler(new StaticResourceHandler(/img/favicon.ico));

Example 7.7 handler static files

The wild-card "/**/*" in source path is necessary if you want to mapping all the urls with same path
prefix to a certain base folder. The base path parameter in constructor of StaticResourceHandler is not
necessary. if the base path is not specified, StaticResourceHandler will treat the part before the wild-
card "/**/*" in source path as the base path.

StaticResourceHandler can be customized by path var configuration or overriding some protected
methods by extending. See details in javadoc of StaticResourceHandler.

// by path var

rules.add("/js/**/*")

 .var(StaticResourceHandler.VAR_CONTENT_TYPE, "text/javascript")

 .handler(StaticResourceHandler.class);

// by overring

rules.add("/js/**/*").handler(new StaticResourceHandler(){

 @Override

 protected long decideCacheTime(String path) {

 return 24 * 60 * 60 * 1000; //force cache 24 hours

 }

});

Note that it is not necessary to specify content type for most situations because StaticResourceHandler
will guess the content type by file name extension automatically.

Example 7.8 customize StaticResourceHandler

7.5. Handle generic path template files

Basically Asta4D asks developers to declare the matching relationship between url and template file
one by one, but it still allows to declare a generic path matching for all files in same folder, which can
be achieved by GenericPathTemplateHandler.

Asta4D User Guide

29

rules.add("/pages/**/*").handler(GenericPathTemplateHandler.class);

As same as the StaticResourceHandler, the wild-card "/**/*" is necessary and the base path parameter
of constructor can be ignored.

Example 7.9 handler template files in bulk

Asta4D User Guide

30

8. Built in form flow
(Being written. See the online sample: Form Flow Sample1)

Asta4D affords built-in form flow to accelerate development of traditional form process. Asta4D's form
flow mechanism supports various flow style and supplies several classical flow style as built-in. For
most cases, the developers only need to implement the init and update method to complete the entire
form related logic.

8.1. Startup

Table of Contents

Form and form field .. 30
Form handler .. 31

Brief of BasicFormFlowHandlerTrait and FormProcessData ... 31
built-in flows .. 34
Implement a real form flow handler .. 35

HTML template of form ... 37
Form snippet ... 39
Cascade form POJO and array field .. 40

Form and form field

In a form process, the basic conception is a POJO which represents the whole form data. In Asta4D, we
use @Form annotation to annotate a POJO as a form object which can be handled by the the form flow.

Also, there must be fields to represent the concrete data of a form, which can also be annotated by a
set of form field annotations. There are several built-in form field annotations for common cases and
you can implement your own form field annotation too(See Chapter 14, details of form flow for more
details about form field annotation).

1 http://asta4dsample-xzer.rhcloud.com/form

http://asta4dsample-xzer.rhcloud.com/form
http://asta4dsample-xzer.rhcloud.com/form

Asta4D User Guide

31

@Form

public class PersonForm extends Person{

 @Hidden

 public Integer getId() {

 return super.getId();

 }

 @Input

 public String getName() {

 return super.getName();

 }

 @Select(name = "bloodtype")

 public BloodType getBloodType() {

 return super.getBloodType();

 }

}

The @Hidden represents a hidden input of html, @Input represents a traditional common input and
@Select is matched to the pull-down element in html. We also recommend to implement the form POJO
by extending from the existing entity POJO, see details at Section 9.2, “Common usage of form flow”.

Example 8.1 annotations on form POJO and form fields

Form handler

Table of Contents

Brief of BasicFormFlowHandlerTrait and FormProcessData ... 31
built-in flows .. 34
Implement a real form flow handler .. 35

Brief of BasicFormFlowHandlerTrait and FormProcessData

After we defined our form POJO, we need to declare a request handler to handle the form request. There
is an BasicFormFlowHandlerTrait which affords most necessary common operations of form process.

The BasicFormFlowHandlerTrait is implemented as an interface with various default methods which
afford a template that allows developer to override any method for customization.

To define a form flow, we need to plan a flow graph which describes how the flow flows.

(before first) <--> step 1 <--> step2 <--> step3 <--> ...

Assume we have a flow as above, note that there can be cycles or branches, which means you can go
any step from any other step in the flow graph, what you need to do is to define how the step should be
transfered. For example, the following flow graph is possible:

(before first) --> step 1 <--> step2 <--> step3 --> (finish)

(before first) --> step 1 <--> step4 <--> step5 --> (finish)

step 1 <-- step3

Asta4D User Guide

32

step 1 <-- step5

To describe the step transfer, there is an interface called FormProcessData which defined the basic
step information:

public interface FormProcessData {

 public abstract String getStepExit();

 public abstract String getStepBack();

 public abstract String getStepCurrent();

 public abstract String getStepFailed();

 public abstract String getStepSuccess();

 public abstract String getFlowTraceId();

}

Example 8.2 FormProcessData

The FormProcessData requires the developer to tell how to handle a form submit, the name of current
step, the target step for success and the target for failing, also want to know where to go if user want to
go back to the previous step or exit. The getFlowTraceId will return a id which represents all the state
of current flow(can be considered as a "session" id for the current in-progress form flow).

The default implementation of FormProcessData is SimpleFormProcessData which retrieves the step
information from the submitted http query parameters which can be put into the HTML template files as a
part of the submitting form. However developers can always decide how to retrieve the step information
by implement their own FormProcessData.

Asta4D User Guide

33

@ContextDataSet

public class SimpleFormProcessData implements FormProcessData {

 @QueryParam(name = "step-exit")

 private String stepExit;

 @QueryParam(name = "step-back")

 private String stepBack;

 @QueryParam(name = "step-current")

 private String stepCurrent;

 @QueryParam(name = "step-failed")

 private String stepFailed;

 @QueryParam(name = "step-success")

 private String stepSuccess;

 @QueryParam(name = FormFlowConstants.FORM_FLOW_TRACE_ID_QUERY_PARAM)

 private String flowTraceId;

}

Example 8.3 SimpleFormProcessData

If we use the default SimpleFormProcessData, we will usually include the following HTML in our template
file side:

<input type="hidden" name="step-current" value="confirm">

<input type="hidden" name="step-failed" value="input">

<button type="submit" name="step-success" class="btn btn-sm btn-

default" value="complete">send</button>

<button type="submit" name="step-back" class="btn btn-sm btn-default" value="input">back</

button>

<button type="submit" name="step-exit" class="btn btn-sm btn-

default" value="exit">cancel</button>

Example 8.4 HTML for SimpleFormProcessData

The details of how the BasicFormFlowHandlerTrait process the submitted form data and transfer the
step can be found at the JavaDoc of BasicFormFlowHandlerTrait. Here we will introduce the points
that what the developers have to do to decide the rule of a form flow. There are 3 methods should be
overridden for a certain flow rule:

• String createTemplateFilePathForStep(String step)

decide how to convert a step to the corresponding target template file path

• boolean skipStoreTraceData(String currentStep, String renderTargetStep, FormFlowTraceData
traceData)

decide whether the flow trace data should be stored

Asta4D User Guide

34

• boolean passDataToSnippetByFlash(String currentStep, String renderTargetStep,
FormFlowTraceData traceData)

decide how to pass the form data for rendering to snippet, by flash scope or not.

For most common situations, all the above things can be decided as general rules in the user
project, so that a common parent class can be utilized to perform the common assumption.
There are two built-in flows representing the classical situations: OneStepFormHandlerTrait and
ClassicalMultiStepFormFlowHandlerTrait. Those two built-in interfaces will be introduced in the next
section and can be considered as reference implementation of how to design and decide a form flow.
User project is always recommended to extend from those two built-in flows rather than the basic
mechanism trait BasicFormFlowHandlerTrait.

built-in flows

There are two built-in handler traits to handle the most common situations of the form flow, which are
OneStepFormHandlerTrait and ClassicalMultiStepFormFlowHandlerTrait.

The OneStepFormHandlerTrait represents a most simple form process: there is a single input page,
after submit, the submitted data will be handled and then return to a before-input page which is usually
a list page of items. To use OneStepFormHandlerTrait, you need to put the following HTML in your form
template files if you are using the default SimpleFormProcessData:

<input type="hidden" name="step-current" value="input">

<input type="hidden" name="step-failed" value="input">

<button type="submit" name="step-success" class="btn btn-sm btn-

default" value="complete">save</button>

<button type="submit" name="step-exit" class="btn btn-sm btn-

default" value="exit">cancel</button>

By OneStepFormHandlerTrait's default implementation, the "step-current" and "step-failed" must be
"input", the "step-success" and the "step-exit" can be any non empty value (usually "complete" and "exit"
is good enough).

Example 8.5 SimpleFormProcessData HTML for OneStepFormHandlerTrait

The ClassicalMultiStepFormFlowHandlerTrait represents a little bit complicated situations: there are
multiple steps in the flow. ClassicalMultiStepFormFlowHandlerTrait assumes that there is at least one
input page and one confirm page with a possible complete page. For the single input page case,
ClassicalMultiStepFormFlowHandlerTrait can be used directly, but if there are multiple splitted input
pages, the developer need to do more customization.

For a classical 3-step form flow(input, confirm, complete), the following HTML need to be put into the
form template files:

Asta4D User Guide

35

<input type="hidden" name="step-current" value="input">

<input type="hidden" name="step-failed" value="input">

<button type="submit" name="step-success" class="btn btn-sm btn-

default" value="confirm">confirm</button>

<button type="submit" name="step-exit" class="btn btn-sm btn-

default" value="exit">cancel</button>

At input page, the "step-current" and "step-failed" must be "input", the "step-success" must be "confirm",
the "step-exit" can be any non empty value (usually "exit" is good enough).

Example 8.6 SimpleFormProcessData HTML for ClassicalMultiStepFormFlowHandlerTrait - buttons of
input page

<input type="hidden" name="step-current" value="confirm">

<input type="hidden" name="step-failed" value="input">

<button type="submit" name="step-success" class="btn btn-sm btn-

default" value="complete">send</button>

<button type="submit" name="step-back" class="btn btn-sm btn-default" value="input">back</

button>

<button type="submit" name="step-exit" class="btn btn-sm btn-

default" value="exit">cancel</button>

At confirm page, the "step-current" must be "confirm","the step-failed" must be "input", the "step-
success" must be "complete", the "step-back" must be "input", the "step-exit" can be any non empty
value (usually "exit" is good enough).

Example 8.7 SimpleFormProcessData HTML for ClassicalMultiStepFormFlowHandlerTrait - buttons of
confirm page

<button type="submit" name="step-exit" value="exit">return</button>

At complete page, a non empty value of "step-exit" is enough.

Example 8.8 SimpleFormProcessData HTML for ClassicalMultiStepFormFlowHandlerTrait - buttons of
complete page

Note that the value of steps' name are not fixed and you can always define your own names by overriding
the corresponding methods about step names at ClassicalMultiStepFormFlowHandlerTrait.

Implement a real form flow handler

As introduced in previous sections, we should always extend our own handler from the built-in classical
traits, before which we also have to decide what our flow should be: one step or multiple steps?

Further, In user project, a common parent class is always recommended. A project limited common
parent class can be used to decide the special rules of the user project and the following two method is
strongly recommended to be overridden to return a configured and validator.

• getTypeUnMatchValidator()

Asta4D User Guide

36

• getValueValidator()

/**

 * A common parent handler to configure the common actions of form flow process in

 application.

 * For quick start, an empty class body would be good enough. You only need to do the

 customization when you really need to do it!!!

 *

 */

public abstract class Asta4DSamplePrjCommonFormHandler<T> implements

 ClassicalMultiStepFormFlowHandlerTrait<T> {

 // we use a field to store a pre generated instance rather than create it at every

 time

 private SamplePrjTypeUnMatchValidator typeValidator = new

 SamplePrjTypeUnMatchValidator(false);

 // as the same as type validator, we cache the value validator instance here

 private SamplePrjValueValidator valueValidator = new SamplePrjValueValidator(false);

 @Override

 public FormValidator getTypeUnMatchValidator() {

 return typeValidator;

 }

 @Override

 public FormValidator getValueValidator() {

 return valueValidator;

 }

}

At confirm page, the "step-current" must be "confirm","the step-failed" must be "input", the "step-
success" must be "complete", the "step-back" must be "input", the "step-exit" can be any non empty
value (usually "exit" is good enough).

Example 8.9 A common parent handler in project:

More details about validator can be found at later section.

In both OneStepFormHandlerTrait and ClassicalMultiStepFormFlowHandlerTrait, there are 3 methods
which are required to be implemented by developers.

• Class<T> getFormCls()

Which specify the form type of current

• T createInitForm()

To create form instance from the current request context. By default, this method will build a form
instance from context by the given type returned by getFormCls(). A handler which need to retrieve the
initial form data from storage should override this method to afford a initial form instance. For common
cases, a handler for adding is not necessary to override this method but a handler for updating should
override this method to query database and build the corresponding form instance.

Asta4D User Guide

37

 @Override

 protected PersonFormForMultiStep createInitForm() throws Exception {

 PersonFormForMultiStep form = super.createInitForm();

 if (form.getId() == null) {// add

 return form;

 } else {// update

 // retrieve the form form db again

 return

 PersonFormForMultiStep.buildFromPerson(PersonDbManager.instance().find(form.getId()));

 }

 }

Example 8.10 query updating target data from db in createInitForm()

• void updateForm(T form)

Which is supposed to perform the final update logic of current form flow.

 @Override

 protected void updateForm(PersonFormForMultiStep form) {

 DefaultMessageRenderingHelper msgHelper =

 DefaultMessageRenderingHelper.getConfiguredInstance();

 if (form.getId() == null) {// add

 PersonDbManager.instance().add(Person.createByForm(form));

 // output the success message to the global message bar

 msgHelper.info("data inserted");

 } else {// update

 Person p = Person.createByForm(form);

 PersonDbManager.instance().update(p);

 // output the success message to specified DOM rather than the global

 message bar

 msgHelper.info(".x-success-msg", "update succeed");

 }

 }

Note that there is a built-in message rendering mechanism to help developer supply a responsive
interaction more easily. The details will be introduced later, simply remember that you can output
message by info/warn/error levels.

Example 8.11 update form data

HTML template of form

As the common pages of Asta4D, the HTML template of a form is as pure HTML too.

Asta4D User Guide

38

<form method="post" afd:render="form.SingleInputFormSnippet">

 <input name="name" type="text"/>

 <input name="age" type="text"/>

 <input id="sex" name="sex" type="radio"/><label for="sex">M</label>

 <select id="bloodtype" name="bloodtype">

 <option value="A">A</option>

 <option value="R" afd:clear>R</option>

 </select>

 <input id="language" name="language" type="checkbox"/><label for="language">M</label>

 <textarea name="memo"></textarea>

 <input type="hidden" name="id">

 <afd:embed target="/templates/form/singleInput/btns.html" />

</form>

Example 8.12 Form template

As you see in the above example, there is no special declaration in the template, let us see how to
declare a form POJO to handle the various form field types:

Asta4D User Guide

39

//@Form to tell the framework this class can be initialized from context

//extend from the entity POJO to annotate form field definitions on getters.

@Form

public class PersonForm {

 @Hidden

 private Integer id;

 @Input

 private String name;

 @Input

 private Integer age;

 @Select(name = "bloodtype")

 private BloodType bloodType;

 // the field name would be displayed as "gender" rather than the original field name

 "sex" in validation messages

 @Radio(nameLabel = "gender")

 private SEX sex;

 @Checkbox

 private Language[] language;

 @Textarea

 private String memo;

}

Example 8.13 form template

The details of annotations will be introduced later, just remember that there is always an annotation
which can represent a certain type of form field.

Another point here is that you can always declare all the fields by your business type rather than string
type, the framework will handle the value conversion correctly.

Form snippet

To render the form values to template, we have to declare a snippet which extends from the
AbstractFormFlowSnippet. As the same as the built-in two classical handler traits, there are two
corresponding snippet traits: OneStepFormSnippetTrait and ClassicalMultiStepFormFlowSnippetTrait.

Also as the same as handlers, a project common parent snippet is recommended to perform common
customization.

Asta4D User Guide

40

public class SingleInputFormSnippet extends Asta4DSamplePrjCommonFormSnippet {

 /**

 * override this method to supply the option data for select, radio and checkbox.

 */

 @Override

 protected List<FormFieldPrepareRenderer> retrieveFieldPrepareRenderers(String

 renderTargetStep, Object form) {

 List<FormFieldPrepareRenderer> list = new LinkedList<>();

 list.add(new

 SelectPrepareRenderer(PersonForm.class, "bloodtype").setOptionData(BloodType.asOptionValueMap));

 list.add(new

 RadioPrepareRenderer(PersonForm.class, "sex").setOptionData(SEX.asOptionValueMap));

 list.add(new

 CheckboxPrepareRenderer(PersonForm.class, "language").setOptionData(Language.asOptionValueMap));

 return list;

 }

}

Example 8.14 Form snippet implementation

Developers are usually asked to override the retrieveFieldPrepareRenderers method to supply extra
data for field rendering, commonly the list of option data is required.

SelectPrepareRenderer can be used to afford option list for select element, RadioPrepareRenderer and
CheckboxPrepareRenderer can be used for radio and checbox input element.

Finally, do not forget to put your snippet declaration in your template file.

<form method="post" afd:render="form.SingleInputFormSnippet">

</form>

Example 8.15 Declare snippet in form template

Basically, until now we have gotten a workable form flow implementation. There is only one thing left
that is validation which will be described in the next section.

Cascade form POJO and array field

8.2. Advanced

Table of Contents

Validation .. 41
Message rendering ... 41
Customize form field annotation ... 41
A sample of defining a new flow rule ... 41

Asta4D User Guide

41

Validation

Asta4D allows any validation mechanism to be integrated and supports Bean Validation 1.1(JSR349
and JSR303) by default. We will explain how to use the built-in Bean Validation mechanism in this
section. The later section will introduce how to customize the validation.

To use Bean Validation, just simply add validation annotations to your form POJO as following:

@NotBlank

@Size(max = 6)

public String getName() {

 return name;

}

public void setName(String name) {

 this.name = name;

}

@Max(45)

@NotNull

public Integer getAge() {

 return age;

}

Example 8.16 Declare validation annotations

More details of Bean Validation can be found at Bean Validation2. We are also using Hibernate Validator
as the implementation(the only existing one in the earth currently). See details at Hibernate Validator3.

The validation will be invoked before the calling of method updateForm, if there is any validation error,
the page will be forwarded to the step specified by "step-failed" which is usually the input page, and the
validation error message will be rendered to page too. More details about validation message rendering
will be introduced in later sections.

As recommended before, a project common parent class is recommended to afford a configured
validator or any other customized validator implementation.

Message rendering

Customize form field annotation

A sample of defining a new flow rule

(Include about how to implement multiple input steps)

2 http://beanvalidation.org/
3 http://hibernate.org/validator/

http://beanvalidation.org/
http://hibernate.org/validator/
http://beanvalidation.org/
http://hibernate.org/validator/

Asta4D User Guide

42

9. Best practice
In this chapter, we will introduce the best practice of Asta4D from our own experiences. There are some
conventions and assumption in this chapter, absolutely there are always special cases which are out
of our assumption, however you can break any rules to handle your special cases, we only discuss the
common cases in this chapter.

9.1. Division of responsibilities between request handler and
snippet

Table of Contents

Do update by request handler ... 42
Normalize page condition by request handler ... 42

The URL of current page represents the unique resource id of an entity(resource) 42
The URL of current page represents a search condition which can be used to retrieve a list
of entities(resources) ... 43

Do update by request handler

MUST do all the operations with side effect at request handler side, that is so we called isolating side
effect.

NEVER do any operations with side effect at snippet side.

Normalize page condition by request handler

Table of Contents

The URL of current page represents the unique resource id of an entity(resource) 42
The URL of current page represents a search condition which can be used to retrieve a list of
entities(resources) ... 43

It is a little bit difficult to explain this rule. For a page, we assume that there are always only 2 types of
pages. Let us see how we should divide our logic between the request handler and snippet.

The URL of current page represents the unique resource id of an entity(resource)

• request handler

• Retrieve the entity(resource) from back-end storage(usually the db) by given id which is specified
by the URL

• Decide how/what to response

• (for example)If the target entity does not exist, return a 404 to the client

• (for example)If the target entity has been changed/migrated to another entity, return a 301 to
the client

• (usually)Save the entity to Context and then forward to the target html template

Asta4D User Guide

43

• snippet

• Retrieve the saved entity(resource) from Context(by @ContextData)

• Perform other necessary query for rendering

The URL of current page represents a search condition which can be used to retrieve a list of
entities(resources)

• request handler

• For simple cases, a request handler is not necessary

Because the snippet can retrieve the condition by @ContextData directly. However we recommend
to declare a POJO to represent your search condition for a little bit complicated situations.

@ContextDataSet

public class Condition{

 @QueryParam

 private String queryword;

 public String getQueryword(){

 return queryword;

 }

}

public class MySnippet{

 @ContextData

 private Condition condition;

}

Example 9.1 Snippet handling a search condition POJO

• Normalize the search condition POJO

In some complicated situations, you may need to retrieve the POJO in request handler then do
some necessary normalization. After the POJO was normalized, you should save it into Context
to pass to snippet.

Asta4D User Guide

44

@ContextDataSet(singletonInContext=true)

public class MyHandler{

 public static final String SEARCH_CONDITION = "SEARCH_CONDITION#MyHandler";

 @RequestHandler

 public void handle(Condition condition){

 //do some normalization here

 ...

 //This is not necessary

 //Context.getCurrentThreadContext().setData(SEARCH_CONDITION, condition);

 }

}

public class MySnippet{

 @ContextData

 private Condition condition;

}

There is a trick that if we define a ContextDataSet's singletonInContext to true, there will be only
on single instance in the context, thus we do not need to declare the name of ContextData even
we stored the POJO by name at the handler side. Even that you do not need to save the condition
POJO explicitly since it is the single instance in the Context.

Example 9.2 Normalize the search condition POJO

• snippet

• Retrieve the saved search condition POJO from Context(by @ContextData) or simply declare the
search condition as its own fields(by @ContextData)

• Perform the query by given search condition to retrieve the list of entities(resources)

• Perform other necessary query for rendering

9.2. Common usage of form flow
To be written.

9.3. The best way of implementing a snippet

Table of Contents

Perform queries as simple as possible ... 45
Make use of ParallelRowRender .. 45
Cache your data ... 45
Avoid duplicated query .. 46
Prepare snippet instance(set default value) by InitializableSnippet ... 46

Asta4D User Guide

45

"x-" convention selector ... 46
Remove contents rather than add contents for conditional rendering .. 47

Perform queries as simple as possible

We encourage developers to retrieve the data at the place where the data is required rather than retrieve
a complicated data structure which holds all the necessary data for the whole page rendering in bulk.
We make a convention that there are only 4 type of return value in our service layer(where the queries
are performed exactly):

• a single entity which is usually the POJO for ORMAP

• an list of entities' ids(not the entities themselves)

• a count of some aggregation queries

• a map as <id, count> of some aggregation queries

In the implementation of render methods, we always retrieve the entity instance one by one even we are
rendering a list of entity (exactly we only have a list of entities' ids). For the concern about performance,
see the later description of cache. However, there must be some situations that we cannot be satisfied
with the performance by retrieving data in a too small granularity. We handle these cases as following
steps:

• Ask yourself, is it true that the granularity of data retrieving is the bottleneck of current performance
issue.

• Ask your team members to confirm the bottleneck again.

• Implement a query method which returns a map as <id, entity> in bulk, then retrieve the entity from
the map in the list rendering.

• If there is still a performance issue, ask yourself and ask your team members to confirm the bottleneck
again.

• Build a query to retrieve all necessary data in bulk then return a complicated data structure from the
query method just like what we are used to do in the traditional MVC mode.

In fact, the complicated data structures are rare in our system and most of our cases can be satisfied
with the basic ORMAP entities.

Make use of ParallelRowRender

The ParallelRowRender splits the rendering action to threads with the size of rendered list. If there are
some heavy operations in the list rendering, ParallelRowRender is a good option to reduce the time
of rendering.

Cache your data

Since we are encouraging developers to retrieve data by a small granularity, the cache is very important
to the system. Especially we often retrieve entities one by one in the list rendering, the cache of entities
is the most important thing for performance. As a matter of fact, we can use the cache more effective
because of the small data granularity.

Asta4D User Guide

46

Avoid duplicated query

An frequently asked question is how to avoid duplicated query in the snippet class. That is actually an
problem since we encourage the developers perform queries at the place where the data is required.
We have the following options to combat this issue:

• Global query lock via AOP

This is the first option that we recommend for query heavy systems and exactly what we did in our
system before we moved to saas architecture. We split all the real queries to a service layer then
perform a global lock for all the equal calling parameters on the same method. We use spring as our
IOC container and simply add the lock logic by the spring's AOP mechanism.

• ContextBindData

For the lighter systems, ContextBindData would be a good choice for most situations. The get
method of ContextBindData will be executed only once in the current Context. See the detail of
ContextBindData at the section called “ContextDataFinder”.

ContextBindData can also be used as a graceful simple wrapping mechanism for data retrieving at
snippet layer. Developers can declare the common queries of a snippet class as ContextBindData
fields of it.

• InitializableSnippet

A snippt class can also implement an interface called InitializableSnippet. The init() method of a
snippet which implements the InitializableSnippet will be called once after the snippet instance is
created. Developer can do some prepare work for rendering by this mechanism such as performing
common queries. However, performing query in init() method is not recommended but everything is
by your choice.
In multiple thread rendering, the snippet classes may still be instantiated multiple times. There is no
warranty about it.

Prepare snippet instance(set default value) by InitializableSnippet

As we mentioned above, InitializableSnippet can be used to do some initialization work after the
snippet instance is created. We do not recommend to perform common queries in init() method of
InitializableSnippet, but the InitializableSnippet interface is still a good option for preparing a snippet
instance.

The classical usage of InitializableSnippet is that we can set default value of declared @ContextData
fields if some of them are set to null.

"x-" convention selector

Though we can use various selectors to render data into the template file, we recommend to use css
class name selector in common cases, which affords the best compatibility to the frond-end refactoring.
We also made a convention which is called "x-" convention. we will always add a css class started with
"x-" to the data rendering target, which tells the front-end guys try their best to keep the compatibility
against the "x-" marked elements when they are refactoring the html sources.

Although we always use "x-" convention to render our data, there are still some acceptable exceptions
in our practice:

Asta4D User Guide

47

• use "a" directly when rendering the link to the "href" attribute

• use "img" directly when rendering the link to the "src" attribute

• use "li" directly when rendering a list
This one is controversial, some of our members argue that we should use "x-" instead of direct "li"
selector.

Remove contents rather than add contents for conditional rendering

Sometimes we need to do conditional rendering. For instance, we assume that there are two tabs
which can be switched by different query parameter, a possible way is to create the target tab contents
dynamically at snippet side as following:

public Renderer render(int id){

 Element elem = null;

 if(id == 0){

 elem = ElementUtil.ParseAsSingle("<div>" + id + "</div>");

 }else{

 elem = ElementUtil.ParseAsSingle("<div class="great">" + id + "</div>");

 }

 return Renderer.create(".x-target", elem);

}

Example 9.3 create contents dynamically

Apparently there is bad smell in above example, we generate DOM element at snippet side, which makes
front-end refactoring difficult. The recommended way is to write all the possible contents in template file
and remove the unnecessary ones in snippet.

public Renderer render(int id){

 Renderer renderer = Renderer.create();

 //remove the clear mark

 renderer.add(".x-target-" + id, "-class", "x-clear");

 //then clear the left ones which is not necessary

 renderer.add(".x-clear", Clear);

 return renderer;

}

<div class="x-target-0 x-clear">0<div>

<div class="x-target-1 x-clear">1<div>

Example 9.4 remove redundant contents

Part III. Reference

Asta4D User Guide

49

10. Details of Template

10.1. Supported tags

Table of Contents

afd:extension ... 49
afd:block ... 49
afd:embed ... 51
afd:snippet .. 51
afd:group .. 52
afd:comment ... 52
afd:msg ... 53

afd:extension

A "afd:extension" tag declares the relationship of inheritance between child template and parent
template.

<afd:extension parent="parent.html">

...

</afd:extension>

Example 10.1 child.html

Attributes:

parent
Identifies the parent template file of the current template.

afd:block

A "afd:block" tag declares a referenceable block in the template file. Child template file can reference
the blocks in parent template by the same tag "afd:block" with extra action declaration: append, insert,
override.

Asta4D User Guide

50

<html>

 <head>

 <afd:block id="block1">

 <link href="parent1.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <afd:block id="block2">

 <link href="parent2.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <title>extension sample</title>

 </head>

 <body>

 <afd:block id="content">content</afd:block>

 </body>

</html>

Example 10.2 parent.html

<afd:extension parent="parent.html">

 <afd:block append="block1">

 <link href="child1.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <afd:block insert="block2">

 <link href="child2.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <afd:block override="content">

 <div>hello</div>

 </afd:block>

</afd:extension>

Example 10.3 child.html

Attributes:

id
The referenceable id of a block.

append
Append all the children of current tag to the tail of the parent's block which id equals the declared
value of the append attribute.

insert
Insert all the children of current tag to the head of the parent's block which id equals the declared
value of the insert attribute.

override
Override the parent's block which id equals the declared value of the override attribute by all the
children of current tag.

Asta4D User Guide

51

The result of merging the above two files by Asta4D's template engine can be found at Chapter 2,
Flexible template.

afd:embed

A "afd:embed" tag declares an action of extracting and inserting an external file's content to the site
where the "afd:embed" tag is declared.

<afd:extension parent="parent.html">

 <afd:block override="content ">

 <div>hello</div>

 <afd:embed target="/templates/embed.html" ></afd:embed>

 </afd:block>

</afd:extension>

Example 10.4 child.html

Attributes:

target
The path of which file should be included at the declaration site.

In the embed target file, afd:block can also be used to append/insert/override the blocks in source
template. Samples and the merging result can be found at Chapter 2, Flexible template.

afd:snippet

A "afd:snippet" tag declares an Java class which assumes the duty of rendering data to the html snippet
contained by the declaring tag.

<afd:snippet render="SimpleSnippet:setProfile">

 <p id="name">name:dummy name</p>

 <p id="age">age:0</p>

</afd:snippet>

Example 10.5

Attributes:

render
The snippet class name and render method name by format:<class name>:<method name>, the
class name and the method name are split by colon. If the method name is omitted, the default
method name "render" will be used.

parallel
A snippet tag with "parallel" attribute will be executed in a separated thread from the main thread of
current http request. It is not necessary to assign a value to this attribute.

Asta4D User Guide

52

clear
A snippet tag with "clear" attribute will not be executed and will be removed from the final output
page. This is useful for disabling certain contents temporarily in certain situations such as debug.
It is not necessary to assign a value to this attribute.

There is an alternative way to declare a snippet by "afd:render" attribute.

<div afd:render="SimpleSnippet:setProfile">

 <p id="name">name:dummy name</p>

 <p id="age">age:0</p>

</div>

Example 10.6

By the same way, "afd:paralell" and "afd:clear" can be used on arbitrary html tags which will be treated
as the same as a "afd:snippet" tag. Note that "afd:paralell" will not be available except the "afd:render"
is declared too, but the "afd:clear" will be always available even there is no declaration of "afd:render"
on the html tag.

afd:group

A "afd:group" tag declares a referenceable DOM element for back-end Java snippet class. It is useful
to reference certain text without wrapping html tag or combine a group of coordinate html tags as a
single node.

<p>We found <afd:group id="item-count">3</afd:group> matched items in our database.</p>

<afd:group id="list-item">

 <div id="title">the title</div>

 <div id="content">the content</div>

</afd:group>

Example 10.7

Attributes:

None.

afd:comment

A "afd:comment" tag declares a comment block in the template files and it will be removed after
rendering.

Asta4D User Guide

53

<afd:comment>This is comment</afd:comment>

<afd:comment>

 <div>This is comment too.</div>

</afd:comment>

Example 10.8

Attributes:

None.

afd:msg

A "afd:msg" tag declares a message managed in external files. This tag is mainly designed for i18n
support, but it also can be used as a simple string replacer. Please see Chapter 15, i18n for more details.

<afd:msg key="search.result.count"></afd:message>

Example 10.9

Attributes:

key
The message key which should can be found in the configured message file.

10.2. Additional

• HTML5 convention

Asta4D's template engine does only support html5, which relies on the underline library jsoup(verion
1.6.3)1. jsoup implements the WHATWG HTML52 specification and requires compliance from the
target file. jsoup can fix some cases of breaking specification but you would still get unexpected result
for certain cases. Basically, you should take care of the following things:

• All tags and attributes are converted to lower case.

• Self closed tags such as <div /> or <afd:embed target="embed.html" /> is not legal.

• There are some tags that the parser "ensures".For example a <tbody> tag must be the first tag
inside <table>, which breas the following example:

1 http://jsoup.org
2 http://whatwg.org/html

http://jsoup.org
http://jsoup.org
http://whatwg.org/html
http://jsoup.org
http://whatwg.org/html

Asta4D User Guide

54

<table>

<afd:snippet render="ListSnippet">

<tr><td></td></tr>

</afd:snippet>

</table>

Example 10.10

But it can be replaced by the following:

<table>

<tr afd:render="ListSnippet"><td></td></tr>

</table>

Example 10.11

• body convention

When a child template file uses "afd:extension" to declare its parent template, only the body part(all
the children of the body except the body tag itself) of the child template will be processed by the
template engine and the parts out of body will be ignored simply. The same convention is applied to
the embed target file. The following two sample will not cause different results by Asta4D.

<afd:extension parent="parent.html">

 <afd:block override="content ">

 <div>hello</div>

 <afd:embed target="/templates/embed.html" ></afd:embed>

 </afd:block>

</afd:extension>

Example 10.12 child.html without body tag:

Asta4D User Guide

55

<html>

<head>

<meta charset="UTF-8">

</head>

<body>

<afd:extension parent="parent.html">

 <afd:block override="content ">

 <div>hello</div>

 <afd:embed target="/templates/embed.html" ></afd:embed>

 </afd:block>

</afd:extension>

</body>

</html>

Example 10.13 child.html with body tag:

This convention can be used for editor compatibility in case of your prefer html editor requires correct
meta information (We add charset="UTF-8" to all of our template files for this reason). Note that this
convention is only available on extended child template file or embedded target file, the parts out of
body tag will be processed normally in the parent template file which is as a root template without
further parent.

Further, explicit parameter information can be commented at body tag in parameterizable embed
target file for better source readability.

<html>

<head><meta charset="UTF-8"></head>

<body itemsize="{Integer}" itemlist="{List}">

 <afd:block append="block1">

 <link href="embed.css" rel="stylesheet" type="text/css" />

 </afd:block>

 <div>good embed</div>

</body>

</html>

In Example 10.14, “embed.html”, we put some "strange" information in the body tag, which suggests
that when this file is embedded, it requires an Integer parameter named "itemsize" and a List
parameter named "itemlist". Note that such declaration can only be regarded as a hint for source
reader and there is no warranty about any parameter check. You should consider it as a sample of
how you can make interesting use of the body convention.

Example 10.14 embed.html

• "afd" name space

The "afd" name space is configured as the default name space of Asta4D's special tags. This name
space can be changed by Configuration#setTagNameSpace.

Asta4D User Guide

56

• TemplateResolver

Asta4D searches certain template file by configured TemplateResolver. There are three
pre-implemented TemplateResolver: FileTemplateResolver, ClasspathTemplateResolver and
WebApplicationTemplateResolver. The default configured WebApplicationTemplateResolver will
search template files with awareness of servlet container. The FileTemplateResolver and
ClasspathTemplateResolver can be used for test purpose, you can also provide your own
TemplateResolver for special search mechanism.

Asta4D User Guide

57

11. Details of snippet class

11.1. Rendering APIs

Table of Contents

Create and add Renderer instance .. 57
CSS Selector .. 58
Render text ... 63
Render DOM attribution .. 63
Clear an Element .. 65
Render raw Element ... 66
Arbitrary rendering for an Element ... 66
Recursive rendering .. 67
Debug renderer ... 68
Missing selector warning ... 68
List rendering .. 69

Asta4D provides various rendering APIs to help developers render value to the page. By those APIs,
developer can render text under a DOM element, set the attribute value for a DOM element, also can
convert a list data to a list of DOM element, and also other various manipulation on DOM elements.

Create and add Renderer instance

There are almost same two sets of overloaded methods: create and add. The create methods are static
and can be used to create a Renderer instance. The add methods are instance methods and can be used
to add a implicitly created Renderer instance to an existing Renderer instance. Both of the create and
add methods return the created Renderer instance therefore chain invoking can be performed as well.

Renderer renderer = Renderer.create("#someId", "xyz").add("sometag", "hello");

renderer.add(".someclass", "abc").add(".someclass2", "abc2");

Renderer renderer2 = Renderer.create("#someId2", "xyz2");

Renderer renderer3 = Renderer.create("#someId3", "xyz3");

//add renderer2 and renderer3 to renderer

renderer.add(renderer2);

renderer.add(renderer3);

Example 11.1

Note that the order of a Renderer instance being added is significant but the target instance which a
Renderer is added to has no effect on the rendering order. In the following example, "add renderer2
to renderer then add renderer3 to renderer2" is completely equal to "add renderer2 and renderer3 to
renderer" at above example.

Asta4D User Guide

58

//add renderer2 to renderer then add renderer3 to renderer2

renderer.add(renderer2);

renderer2.add(renderer3);

Example 11.2

The following is equal too:

//add renderer3 to renderer2 then add renderer2 to renderer

renderer2.add(renderer3);

renderer.add(renderer2);

Example 11.3

A instance of Renderer should not be considered as a single rendering declaration only, A instance of
Renderer is exactly a rendering chain holder, you can call add method on any instance of the chain
but the added Renderer instance will be always added to the tail of the chain. If the added Renderer
instance is holding over than one Renderer instance in its own chain, the held chain will be added to
the tail of the chain of the target Renderer.

There is also a non-parameter create method which can by used to create a "do nothing" Renderer for
source convenience. In our practice, we write the following line at the beginning of most of our snippet
methods.

Renderer renderer = Renderer.create();

Example 11.4

In following sections, we will introduce add method only, but you should remember that there should be
a equal create method for most cases. You can also read the Java doc of Renderer for more details.

CSS Selector

Asta4D is using a modified version of jsoup library1 to afford CSS selector function. Currently, we support
the following selectors:

Table 11.1. Supported selectors

Pattern Matches Example

* any element *

1 http://jsoup.org/

http://jsoup.org/
http://jsoup.org/

Asta4D User Guide

59

Pattern Matches Example

tag elements with the given tag
name

div

ns|E elements of type E in the
namespace ns

fb|name finds <fb:name>
elements

#id elements with attribute ID of "id" div#wrap, #logo

.class elements with a class name of
"class"

div.left, .result

[attr] elements with an attribute
named "attr" (with any value)

a[href], [title]

[^attrPrefix] elements with an attribute name
starting with "attrPrefix". Use
to find elements with HTML5
datasets

[^data-], div[^data-]

[attr=val] elements with an attribute
named "attr", and value equal to
"val"

img[width=500], a[rel=nofollow]

[attr^=valPrefix] elements with an attribute
named "attr", and value starting
with "valPrefix"

a[href^=http:]

[attr$=valSuffix] elements with an attribute
named "attr", and value ending
with "valSuffix"

img[src$=.png]

[attr*=valContaining] elements with an attribute
named "attr", and value
containing "valContaining"

a[href*=/search/]

[attr~=regex] elements with an attribute
named "attr", and value
matching the regular expression

img[src~=(?i)\\.(png|jpe?g)]

 The above may be combined in
any order

div.header[title]

Combinators

E F an F element descended from
an E element

div a, .logo h1

E > F an F direct child of E ol > li

E + F an F element immediately
preceded by sibling E

li + li, div.head + div

Asta4D User Guide

60

Pattern Matches Example

E ~ F an F element preceded by
sibling E

h1 ~ p

E, F, G all matching elements E, F, or
G

a[href], div, h3

Pseudo selectors

:lt(n) elements whose sibling index is
less than n

td:lt(3) finds the first 2 cells of
each row

:gt(n) elements whose sibling index is
greater than n

td:gt(1) finds cells after skipping
the first two

:eq(n) elements whose sibling index is
equal to n

td:eq(0) finds the first cell of
each row

:has(selector) elements that contains at least
one element matching the
selector

div:has(p) finds divs that
contain p elements

:not(selector) elements that do not match
the selector. See also
Elements.not(String)

div:not(.logo) finds all divs that
do not have the "logo" class.

div:not(:has(div)) finds divs that
do not contain divs.

:contains(text) elements that contains the
specified text. The search is
case insensitive. The text may
appear in the found element, or
any of its descendants.

p:contains(jsoup) finds p
elements containing the text
"jsoup".

:matches(regex) elements whose text
matches the specified regular
expression. The text may
appear in the found element, or
any of its descendants.

td:matches(\\d+) finds table
cells containing digits.
div:matches((?i)login) finds
divs containing the text, case
insensitively.

:containsOwn(text) elements that directly contains
the specified text. The search is
case insensitive. The text must
appear in the found element,
not any of its descendants.

p:containsOwn(jsoup) finds p
elements with own text "jsoup".

:matchesOwn(regex) elements whose own text
matches the specified regular
expression. The text must
appear in the found element,
not any of its descendants.

td:matchesOwn(\\d+) finds table
cells directly containing digits.
div:matchesOwn((?i)login) finds
divs containing the text, case
insensitively.

Asta4D User Guide

61

Pattern Matches Example

 The above may be combined
in any order and with other
selectors

.light:contains(name):eq(0)

Structural pseudo selectors

:root The element that is the root
of the document. In HTML,
this is the html element. In a
snippet method, this is the
element where the current
snippet method is declared. In
a recursive Renderer, this is
the target element which the
current renderer is applied to.

:root

:nth-child(an+b) elements that have an+b-1
siblings before it in the
document tree, for any positive
integer or zero value of n, and
has a parent element. For
values of a and b greater than
zero, this effectively divides
the element's children into
groups of a elements (the last
group taking the remainder),
and selecting the bth element
of each group. For example,
this allows the selectors to
address every other row in a
table, and could be used to
alternate the color of paragraph
text in a cycle of four. The a
and b values must be integers
(positive, negative, or zero).
The index of the first child of
an element is 1. In addition to
this, :nth-child() can take odd
and even as arguments instead.
odd has the same signification
as 2n+1, and even has the
same signification as 2n.

tr:nth-child(2n+1) finds every
odd row of a table. :nth-
child(10n-1) the 9th, 19th, 29th,
etc, element. li:nth-child(5) the
5h li

:nth-last-child(an+b) elements that have an+b-1
siblings after it in the document
tree. Otherwise like :nth-child()

tr:nth-last-child(-n+2) the last
two rows of a table

Asta4D User Guide

62

Pattern Matches Example

:nth-of-type(an+b) pseudo-class notation
represents an element that has
an+b-1 siblings with the same
expanded element name before
it in the document tree, for any
zero or positive integer value of
n, and has a parent element

img:nth-of-type(2n+1)

:nth-last-of-type(an+b) pseudo-class notation
represents an element that has
an+b-1 siblings with the same
expanded element name after
it in the document tree, for any
zero or positive integer value of
n, and has a parent element

img:nth-last-of-type(2n+1)

:first-child elements that are the first child
of some other element.

div > p:first-child

:last-child elements that are the last child
of some other element.

ol > li:last-child

:first-of-type elements that are the first
sibling of its type in the list of
children of its parent element

dl dt:first-of-type

:last-of-type elements that are the last
sibling of its type in the list of
children of its parent element

tr > td:last-of-type

:only-child elements that have a parent
element and whose parent
element hasve no other
element children

:only-of-type an element that has a parent
element and whose parent
element has no other element
children with the same
expanded element name

:empty elements that have no children
at all

Note: Because of the internal implementation of how to perform Renderer on target element, there may
be unexpected temporary elements to be added into the Current DOM tree, which will be removed safely
at the final stage of page production but may cause the structural pseudo selectors work incorrectly
(However, the :root selector can still work well).

Asta4D User Guide

63

Render text

add(String selector, String value) can be used to render a text under the element specified by given
selector. All child nodes of the target element specified by selector will be emptied and the given String
value will be rendered as a single text node of the target element.

renderer.add("#someId", "xyz");

Example 11.5

Long/long, Integer/int, Boolean/boolean will be treated as text rendering too.

renderer.add("#someIdForLong", 123L);

renderer.add("#someIdForInt", 123);

renderer.add("#someIdForBool", true);

Example 11.6

Render DOM attribution

add(String selector, String attr, String value) can be used to render attribute value of a DOM element.
There are some rules will be applied for the pattern of specified "attr" and "value":

• add("+class", value)

call addClass(value) on target Element, null value will be treated as "null".

• add("-class", value)

call removeClass(value) on target Element, null value will be treated as "null".

• add("class", value)

call attr("class", value) on target Element if value is not null, for a null value, removeAttr("class") will
be called.

• add("anyattr", value)

call attr("anyattr", value) on target Element if value is not null, for a null value, removeAttr("anyattr")
will be called.

• add("anyattr", SpecialRenderer.Clear)

call removeAttr("anyattr") on target Element.

• add("+anyattr", value)

call attr("anyattr", value) on target Element if value is not null, for a null value, removeAttr("anyattr")
will be called.

Asta4D User Guide

64

• add("+anyattr", SpecialRenderer.Clear)

call removeAttr("anyattr") on target Element.

• add("-anyattr", value)

call removeAttr("anyattr") on target Element.

There is also an add method for attribution rendering that accepts arbitrary data as Object type:
add(String selector, String attr, Object value). When the "value" is specified as a non-string value and the
"attr" is specified as "+class" or "-class", A IllegalArgumentException will be thrown. When an arbitrary
Object value is rendered to attribute by such method, an internal object reference id will be rendered
to the target attribute instead of the original object since it cannot be treated as attribute string value
directly. The object reference id can be used by variable injection for the nested snippet rendering. See
the following example, we pass a Date instance to the nested snippet method:

<div afd:render="MySnippet:outer">

 <div id="inner" afd:render="MySnippet:inner">

 </div>

</div>

public class MySnippet{

 public Renderer outer(){

 return Renderer.create("#innder", "now", new Date());

 }

 public Renderer inner(Date now){

 return Renderer.create("#current-date", now);

 }

}

Example 11.7

This mechanism can be used for parametrized embedding too. Parameters can be specified by
attribution rendering in the snippet method of parent template file and can be retrieved by the snippet
method of child template file as same as the above example.

Asta4D User Guide

65

<!-- parent template -->

<div afd:render="MySnippet:outer">

 <afd:embed id="inner" target="child.html"></afd:embed>

</div>

<!-- child template -->

 <div afd:render="MySnippet:embed">

 </div>

public class MySnippet{

 public Renderer outer(){

 return Renderer.create("#innder", "now", new Date());

 }

 public Renderer embed(Date now){

 return Renderer.create("#current-date", now);

 }

}

Example 11.8

Clear an Element

On all the rendering methods, if the specified value is null, the target element will be removed. And
there is also an enumeration value of SpecialRenderer.Clear which can be used to declare a remove
operation for an element too.

//if the String value is null, the target element will be removed

String txt = null;

Renderer.create("#someId", txt);

import static com.astamuse.asta4d.render.SpecialRenderer.Clear

Renderer.create("#someId", Clear);

Example 11.9

Asta4D User Guide

66

Note that on the attribute rendering methods, if null value or SpecialRenderer.Clear are specified, as we
mentioned in the previous section, the target attribute will be removed and the target element will remain.

Render raw Element

An existing DOM element can be replaced by a new element by specifying the new element as the
rendering value. The new element can be generated by DOM APIs or simply parsed from raw html
source.

Renderer renderer = Renderer.create();

Element ul = new Element(Tag.valueOf("ul"), "");

List<Node> lis = new ArrayList<>();

ul.appendChild(new Element(Tag.valueOf("li"), "").appendText("This text is created by

 snippet.(1)"));

ul.appendChild(new Element(Tag.valueOf("li"), "").appendText("This text is created by

 snippet.(2)"));

ul.appendChild(new Element(Tag.valueOf("li"), "").appendText("This text is created by

 snippet.(3)"));

renderer.add("#someId", ul);

String html = "asta4d hp";

renderer.add("#hp-link", ElementUtil.parseAsSingle(html));

Example 11.10

There are several utility methods in ElementUtil that can help you operate DOM easier.
ElementUtil#parseAsSingle would cause potential cross-site issues, so take care of it and make sure
that you have escaped all the raw html source correctly. Since Asta4D has provided plenty of rendering
methods, you should try your best to avoid create element from raw html source. If you have to do
something on raw element level, your first option should be DOM APIs and parsing raw html source
should be your last alternative.

Arbitrary rendering for an Element

Sometimes you will want to access the rendering target on raw element level and Asta4D allow
you access the rendering target element by the interface of ElementSetter. ElementSetter asks the
implementation of a callback method "set(Element elem)". As a matter of fact, the text rendering
and attribute rendering are achieved by built-in implementation of ElementSetter(TextSetter and
AttributeSetter).There is also another built-in ElementSetter implementation called ChildReplacer which
can replace the children of rendering target by given element.

Asta4D User Guide

67

public class ChildReplacer implements ElementSetter {

 private Element newChild;

 /**

 * Constructor

 *

 * @param newChild

 * the new child node

 */

 public ChildReplacer(Element newChild) {

 this.newChild = newChild;

 }

 @Override

 public void set(Element elem) {

 elem.empty();

 elem.appendChild(newChild);

 }

}

Example 11.11 source of ChildReplacer

You can regard the built-in TextSetter, AttributeSetter and ChildReplacer as reference implementation
in case of you need implement your own ElementSetter. Following example shows how to use
ChildReplacer or declare an anonymous class for ElementSetter on rendering.

Renderer renderer = Renderer.create();

renderer.add("#someId", new ChildReplacer(ElementUtil.parseAsSingle("<div>aaa</div>")));

renderer.add("#someNode", new ElementSetter(){

 public void set(Element elem) {

 if(elem.tagName().equals("div")){

 elem.addClass("someClass);

 }

 }

});

Example 11.12

On element level, you can also parse element by Element#html(String html) method which will also
cause potential cross-site issues. As same as the raw element rendering, parsing raw html source
should be your last alternative.

Recursive rendering

For a snippet method, the returned Renderer will be applied to the target element which declares the
current snippet method. In the returned Renderer chain, you can also specify recursive Renderer which
is only applied to the element specified by given CSS selector.

Asta4D User Guide

68

Renderer.create("#someId", Renderer.create("a", "href", "https://github.com/astamuse/

asta4d"));

Example 11.13

Debug renderer

Because the Renderer is applied after your snippet method finished, it is difficult to debug if there
is something wrong. Asta4D affords rendering debug function too. There are two overloaded debug
method, one accepts a log message only and another accepts a log message and a selector.
The debug renderer will output the current status of rendering target element to log file, if the
selector is not specified, the whole rendering target of current snippet method will be output, if the
selector is specified, only the matched child elements will be output. Log level can be configured by
"com.astamuse.asta4d.render.DebugRenderer".

//the whole target rendering target will be output before and after

renderer.addDebugger("before render value");

renderer.add("#someId", value);

renderer.addDebugger("after render value");

//only the a tag element will be output before and after

renderer.addDebugger("before render value for link", "a");

renderer.add("a", "href", url);

renderer.addDebugger("after render value for link", "a");

If you specified a selector on debugger but do not get any output, it usually means you specified wrong
selector or the target element has been removed by previous rendering or outer snippet rendering.

Example 11.14

Missing selector warning

If your specified selector on rendering method cannot match any element,
Asta4D will output a warning message to log as "There is no element
found for selector [#someId] at [com.astamuse.asta4d.test.render.RenderingTest
$TestRender.classAttrSetting(RenderingTest.java:73)], if it is deserved, try
Renderer#disableMissingSelectorWarning() to disable this message and
Renderer#enableMissingSelectorWarning could enable this warning again in your renderer chain".

Note that the place where the missing selector declared is output to log too, which is disabled by default
since it is expensive on production environment. You can enable the source row number output by
Configuration#setSaveCallstackInfoOnRendererCreation.

Asta4D User Guide

69

Sometimes, the missing selector may be designed by your logic, you can disable the warning message
on your rendering chain temporarily as following:

renderer.disableMissingSelectorWarning();

renderer.add("#notExistsId", "abc");

renderer.enableMissingSelectorWarning();

Example 11.15

List rendering

Asta4D does not only allow you to rendering single value to an element, but also allow you to duplicate
elements by list data, which is usually used to perform list rendering. java.lang.Iterable of String/Integer/
Long/Boolean can be rendered directly as text rendering:

Renderer renderer = Renderer.create();

renderer.add("#strList", Arrays.asList("a", "b", "c"));

renderer.add("#intList", Arrays.asList(1, 2, 3));

renderer.add("#longList", Arrays.asList(1L, 2L, 3L));

renderer.add("#boolList", Arrays.asList(true, false, true));

Example 11.16

On list rendering, the matched element will be duplicated times as the size of the list and the value will
be rendered to each duplicated element. You can also perform complex rendering for arbitrary list data
by RowConvertor:

render.add("#someIdForRenderer", Arrays.asList(123, 456, 789), new RowConvertor<Integer,

 Renderer>() {

 @Override

 public Renderer convert(int rowIndex, Integer obj) {

 return Renderer.create("#id", "id-" + obj).add("#otherId", "otherId-" + obj);

 }

});

Example 11.17

Asta4D User Guide

70

Since we will return Renderer in most cases, the RowConvertor can be replaced by RowRenderer which
can omit the type declaration of Renderer:

render.add("#someIdForRenderer", Arrays.asList(123, 456, 789), new RowRenderer<Integer>()

 {

 @Override

 public Renderer convert(int rowIndex, Integer obj) {

 return Renderer.create("#id", "id-" + obj).add("#otherId", "otherId-" + obj);

 }

});

Example 11.18

The returned Renderer by RowConvertor/RowRenderer will be applied to each duplicated element by
the given list data.

On list rendering, the rendering method accepts java.lang.Iterable rather than java.util.List, which afford
more flexibilities to developers. Note that if the given iterable is empty, the target element will be
duplicated 0 times, which means the target element will be removed.

Asta4D also afford parallel list rendering for you, simply use ParallelRowConvertor/
ParallelRowRenderer instead of RowConvertor/RowRenderer:

render.add("#someIdForRenderer", Arrays.asList(123, 456, 789), new

 ParallelRowRenderer<Integer>() {

 @Override

 public Renderer convert(int rowIndex, Integer obj) {

 return Renderer.create("#id", "id-" + obj).add("#otherId", "otherId-" + obj);

 }

});

Example 11.19

The parallel list rendering ability is provided by an utility class called ListConvertUtil which basically
provides various transform methods for list data conversion like the map function in Scala/Java8. For
Java8, lambda and stream api support will be added in future.

The ListConvertUtil uses a thread pool to perform parallel transforming, the size of pool can be
configured by Configuration#listExecutorFactory#setPoolSize. There is also an import configuration of
ParallelRecursivePolicy. When perform the parallel list transforming recursively, thread dead lock would
potentially occur, so you have to choose a policy to handle this case:

• EXCEPTION

When recursive parallel list transforming is identified, throw an RuntimeException.

• CURRENT_THREAD

Asta4D User Guide

71

When recursive parallel list transforming is identified, the child transforming will be performed in the
same thread of parent transforming without picking up an usable thread from pool.

• NEW_THREAD

When recursive parallel list transforming is identified, the child transforming will be performed in
a newly generated thread out of the configured thread pool, the generated thread will be finished
immediately after the child transforming finished.

We recommend EXCEPTION or CURRENT_THREAD and the default is EXCEPTION.

11.2. Other things about snippet and rendering

Table of Contents

Nested snippet .. 71
InitializableSnippet ... 72
Component rendering .. 72
SnippetInterceptor ... 74
SnippetExtractor .. 74
SnippetResolver .. 74
SnippetInvoker .. 74

Nested snippet

Snippet can be declared recursively.There is a convention that the outer snippet will always be executed
on a prior order.

<div afd:render="OuterSnippet">

 <div id="inner" afd:render="InnerSnippet">

 <p id="name">name:dummy name</p>

 <p id="age">age:0</p>

 </div>

</div>

Example 11.20

In the above example, the "InnerSnippet" will be executed after the "OuterSnippet" has been executed,
which also means you can configure the inner snippet dynamically.

Asta4D User Guide

72

public class OuterSnippet{

 public Renderer render(){

 return Renderer.create("#inner", "hasprofile", "true");

 }

}

public class InnerSnippet{

 public Renderer render(bool hasprofile){

 if(hasprofile){

 return Renderer.create("#name span", "Bob").add("#age span", 27);

 }else{

 return Renderer.create("*", Clear);

 }

 }

}

Example 11.21

InitializableSnippet

The snippet class instance is singleton in request scope and will be created at the first time a snippet
is required. After the snippet class instance has been created, field value injection will be applied to
the created instance once(About detail of value injection, see the later chapter). After all the field has
been injected, the framework will check whether the current class implements the "InitializableSnippet"
interface, if true, the init method of InitializableSnippet will be invoked once.

public static class InitSnippet implements InitializableSnippet {

 @ContextData

 private String value;

 private String resolvedValue;

 @Override

 public void init() throws SnippetInvokeException {

 resolvedValue = value + "-resolved";

 }

}

Example 11.22

In the above example, the field "value" will be injected after the instance is created, then the init method
will be applied to finish the complete initialization logic of the snippet class.

Component rendering

For the view first policy, we will treat the template files as first class things. The embed file mechanism
allow you separate some view blocks as independent components at template file layer. There is

Asta4D User Guide

73

also a snippet class level mechanism that afford you the same ability as embed file, which is called
"Component".

Why we need "Component"? The embed file can only be include statically, but the "Component" is an
extendible Java class which can be configured by arbitrary Java code and polymorphism can be easily
performed too. Basically, The "Component" mechanism can help developer to build independent view
component easier than static embed file.

The constructor of Component accepts a string value as an embed file path or an instance of Element,
and also an optional AttributesRequire can be specified to provide some initialization parameters as
same as the parametrized embedding introduced in the previous section.

 public Component(Element elem, AttributesRequire attrs) throws Exception {

 ...

 }

 public Component(Element elem) throws Exception {

 ...

 }

 public Component(String path, AttributesRequire attrs) throws Exception {

 ...

 }

 public Component(String path) throws Exception {

 ...

 }

Example 11.23 constructors of Component

public Renderer render(final String ctype) throws Exception {

 return Renderer.create("span", new Component("/

ComponentRenderingTest_component.html", new AttributesRequire() {

 @Override

 protected void prepareAttributes() {

 this.add("value", ctype);

 }

 }));

}

In this example, the target element specified by the selector "span" will be completely replaced by the
result of Component#toElement().

Example 11.24 render a component

Commonly, we do not render a component as above example, we usually extend from Component and
expose a constructor with business initialization parameters or supply a group of business initialization
methods, by which we can build an independent view component simply.

Asta4D User Guide

74

Further, Component also has a "toHtml" method which will return the html source of the component
rendering result. This method can be used by ajax request to acquire a dynamically rendered
component.

SnippetInterceptor

SnippetExtractor

SnippetResolver

SnippetInvoker

Asta4D User Guide

75

12. Variable injection

12.1. Context

Table of Contents

Context/WebApplicationContext ... 75
Scope ... 76
ContextBindData ... 77

Context/WebApplicationContext

Asta4D use "Context" to manage data life cycle. The "Context" in asta4d-core supplies the basic
data management mechanism and the WebApplicationContext from asta4d-web afford more powerful
extending for web application development. Commonly, we will only use WebApplicationContext in our
application. There are two ways to retrieve an instance of WebApplicationContext.

WebApplicationContext context = Context.getCurrentThreadContext();

Example 12.1 Retrieve an instance of WebApplicationContext by static method

public class PageSnippet {

 public Renderer render(WebApplicationContext context) {

 ...

 }

}

Example 12.2 Retrieve an instance of WebApplicationContext by injection

As the name of "getCurrentThreadContext" suggested, the context is managed per thread, and also
that the context will be initialized before every http request is processed and will be cleared after every
http request process has finished.

WebApplicationContext affords several methods to retrieving raw servlet apis and other helpful
information:

• getRequest

Return the HttpServletRequest instance of current request.

• getResponse

Return the HttpServletResponse instance of current request.

• getServletContext

Return the ServletContext instance of current request.

Asta4D User Guide

76

• getAccessURI

Return the rewritten url of current request. For details about URL rewritting, see later chapter.

Scope

The context provides a mechanism to manage data by scopes. There are only 3 scopes supplied by
asta4d-core's Context, but the WebApplicationContext from asta4d-web supply more scopes to help
web application development.

Available scopes(with the constant name):

global(SCOPE_GLOBAL)
The data saved in global scope can be accessed cross all the contexts, you can treat it as a static
object pool.

default(SCOPE_DEFAULT)
The data saved in default scope can only be access by the current context.

element attribute(SCOPE_ATTR)
This scope is related to snippet rendering. An element attribute scope is a wrapping of element
attribute. When you try to retrieve data from element attribute scope, the attribute of current
rendering target element will be checked and the corresponding attribute value will be returned,
further, if there is no corresponding attribute in the current rendering target element's attributes, all
the parents of current rendering target element will be checked recursively.

request(SCOPE_REQUEST)
The data saved in default scope can only be access in the current http request process. Note that
the request scope is simply delegated to the default scope and it is different from servlet api's http
request attribute.

path var(SCOPE_PATHVAR)
Path var scope represents the variables declared in url rules.

query parameter(SCOPE_QUERYPARAM)
Query parameter scope represents the query parameters specified at the part after question mark
in an url.

session(SCOPE_SESSION)
Session scope represents the data saved in http session.

header(SCOPE_HEADER)
Session scope represents the header data from a http request.

cookie(SCOPE_COOKIE)
Cookie scope represents the cookie data from a http request.

flash(SCOPE_FLASH)
Asta4D affords a mechanism to allow pass data to the redirected http request, which is called flash
data.

Normally, the data saved in context can be accessed by variable injection. If you need get data manually,
you can do it as following:

Asta4D User Guide

77

WebApplicationContext context = Context.getCurrentThreadContext();

//from default scope

Integer count = context.get("saved-count");

//from session

Integer sessionCount = context.get(WebApplicationContext.SCOPE_SESSION, "saved-count");

Example 12.3 Retrieve data from context

You can implement your own customized scope or afford you customized implementation for
existing scopes. You need extend from WebApplicationContext then override the method called
"createMapForScope".(If you only want to split your data from default scope, you can simply specify a
new scope name and a new scope will be created automatically, the created scope's life cycle is as
the same as default scope)

public class MyContext extends WebApplicationContext {

 @Override

 protected ContextMap createMapForScope(String scope) {

 ContextMap map = null;

 switch (scope) {

 case SCOPE_SESSION: {

 HttpServletRequest request = getRequest();

 map = new MemcachedSessionMap(request);

 default:

 map = super.createMapForScope(scope);

 }

 return map;

 }

}

Example 12.4 Customized memcached drived session management

See later chapter of Asta4dServerlet for how to configure Asta4D to use the customized Context
implementation instead of the default WebApplicationContext.

ContextBindData

Since all the data query logic are performed at snippet class, we will want to avoid duplicated query on
same page rendering. The recommended solution is caching your query result by cache library such
as ehcache. But Asta4D also affords you an alternative solution for some simple cases, which is called
ContextBindData.

ContextBindData can be treated as a lazy load instance field for Java class. It is warranted that a
ContextBindData will be initialized only once in a same Asta4D context and it will only be initialized
when you first call it. There are some exceptions for the warranty about initializing only once, we will
explain them later.

Asta4D User Guide

78

public class PageSnippet {

 @ContextData

 private int count;

 private ContextBindData<Integer> data = new ContextBindData<Integer>(true) {

 @Override

 protected Integer buildData() {

 return count + 1;

 }

 };

 public Renderer render() {

 return Renderer.create("*", data.get());

 }

}

Example 12.5

You should have noticed that we pass a "true" to the constructor of ContextBindData, which means we
require the warranty that it should be only initialize once in the current context. If we pass nothing or
pass a "false" to the constructor, the buildData method may be invoked multiple times in multi-thread
rendering, but which is faster than warranted initialization simply because of skipping the multi-thread
lock process.

Again, we recommend to use cache library to avoid duplicated query, but you can use ContextBindData
as a simple, light weight alternative. See detail of Section 9.3, “The best way of implementing a snippet”.

12.2. Injection

Table of Contents

@ContextData .. 78
@ContextDataSet ... 79
ContextDataFinder .. 81
DataConvertor ... 81
ContextDataHolder .. 81

@ContextData

All fields annotated by @ContextData in a snippet class will be initialized/injected automatically when the
snippet class instance is initialized. Further, even the method parameters of snippet rendering method
and request handle method are automatically injected, you can still customize the injection by extra
@ContextData annotation.

Note that there are something different between field injection and method parameter injection. The
fields of snippet class without @ContextData will not be injected, but method parameters will be always
injected even without @ContextData.

Asta4D User Guide

79

Available configurations of @ContextData:

name
The name of saved data in context. If it is not specified, the field name or parameter name will be
used(This requires that you reverse the parameter names when compile).

scope
The scope of saved data in context. If it is no specified, Asta4D will try to search the data in all the
scopes by a predefined order:

1. element attribute(SCOPE_ATTR)

2. path var(SCOPE_PATHVAR)

3. query parameter(SCOPE_QUERYPARAM)

4. flash(SCOPE_FLASH)

5. cookie(SCOPE_COOKIE)

6. hearder(SCOPE_HEADER)

7. request/default(SCOPE_REQUEST/SCOPE_DEFAULT)

8. session(SCOPE_SESSION)

9. global(SCOPE_GLOBAL)

This order can be configured via
WebApplicationContextDataFinder#setDataSearchScopeOrder.See details at the section called
“ContextDataFinder”

typeUnMatch
The policy of how to handle the unmatched type on data conversion. The default action is throw
Exception and another two value of "DEFAULT_VALUE" and "DEFAULT_VALUE_AND_TRACE"
can be specified.

There are several scope specified annotations can be used as convenience.

• @SessionData

• @QueryParam

• @PathVar

• @HeaderData

• @CookieData

• @FlashData

All the above annotation have the same configurable items with the original @ContextData annotation
except being fixed with according data scope.

@ContextDataSet

A pojo class annotated by @ContextDataSet will be treated as a variable holder. If the type of a snippet
class field or a method parameter is a class annotated by @ContextDataSet, when Asta4D do injection,

Asta4D User Guide

80

a new instance will be created at first, then all the fields of current instance will be scanned and all
the fields annotated by @ContextData will be injected as same as the snippet class field injection.
@ContextDataSet can be used to allocate all of the form data into one single instance as a convenience.

@ContextDataSet

public static class MySet {

 @ContextData

 private long f1;

 @ContextData

 private String f2;

 public long getF1() {

 return f1;

 }

 public String getF2() {

 return f2;

 }

}

public static class MySnippet {

 public void render(MySet holder) {

 }

}

public static class MySnippet2 {

 @ContextData

 private MySet holder;

 public void render() {

 }

}

Note that even you declared @ContextDataSet on the class, you still need to declare the @ContextData
on the field declaration. For method parameter, it is not necessary since all the parameters are injected
automatically. Further, for a declared @ContextDataSet, you still need to declare @ContextData on
every field you want to be injected.

Example 12.6

Available configurations of @ContextData:

singletonInContext
A boolean value to indicate that whether the target ContextDataSet should be singleton in a single
context life cycle. The default value is false, which means a new instance would be created at every
time when a ConextDataSet is required to inject.

Asta4D User Guide

81

factory
A factory class can be used to indicate how to create an instance of ContextDataSet. The default
factory will call Class#newInstance() to create a new instance of ContextDataSet.

ContextDataFinder

Asta4D search data in context by pre configured ContextDataFinder implementation. The default
implementation is WebApplicationContextDataFinder. You can supply your own search mechanism by
implementing the ContextDataFinder interface or extending from WebApplicationContextDataFinder.
WebApplicationContextDataFinder defines the scope search order if scope is not specified, and also
returns some special data by hard coding type check:

• Context/WebApplicationContext

• ResourceBundleHelper

• ParamMapResourceBundleHelper

• HttpServletRequest

• HttpServletResponse

• ServletContext

• UrlMappingRule

The first 3 types are afforded by the parent class of WebApplicationContextDataFinder:
DefaultContextDataFinder. To supply your own logic, you can override the findDataInContext method
and the WebApplicationContextDataFinder's source can be treated as reference implementation.

DataConvertor

ContextDataHolder

Asta4D User Guide

82

13. URL rule

13.1. Rule apis

Table of Contents

UrlMappingRuleInitializer ... 82
Handy rules .. 83

UrlMappingRuleInitializer

All the url mapping rules can be supplied by implementing the UrlMappingRuleInitializer interface which
can be configured by WebApplicationConfiguration#setUrlMappingRuleInitializer.

UrlMappingRuleInitializer's initUrlMappingRules method does not return configured rules directly, it
supply a UrlMappingRuleHelper instance by parameter instead. The UrlMappingRuleHelper afford a
group of methods to help developers build url mapping rules.

UrlMappingRuleHelper allows add new rule by add methods, which will be discussed in next section,
let us see the global configuration methods of UrlMappingRuleHelper at first.

• addDefaultRequestHandler(Object... handlerList)

• addDefaultRequestHandler(String attribute, Object... handlerList)

There are two overloaded methods of addDefaultRequestHandler. Added request handlers without
attribute declaration will be applied to all the rules and the ones with attribute declaration will be
applied to therules with same attribute only.

• addGlobalForward(Object result, String targetPath)

• addGlobalForward(Object result, String targetPath, int status)

There are two overloaded methods of addGlobalForward. The one with status parameter can
customize the http response code with specified status code or the default code 200 will be returned
to client.

• addGlobalRedirect(Object result, String targetPath)

A global redirect result mapping can be declared. There is a convention about the format of target
path(the normal redirect on special rules follows the same convention):

• common url string("http://www.example.com/somepage.html")

The target url will be redirected as temporary(code 302).

• common url string with prefix("301:http://www.example.com/somepage.html")

The target url will be redirected as specified code by the prefix. 301 or 302 are acceptable and
"p" or "t" can be used to represent "permanent" or "temporary" as well(which means "301:http://
www.example.com/somepage.html" equals to "p:http://www.example.com/somepage.html").

• addRequestHandlerInterceptor(Object... interceptorList)

Asta4D User Guide

83

• addRequestHandlerInterceptor(String attribute, Object... interceptorList)

The request handler interceptor is need to be clarified more in the implementation. We skip the
description at present.

• registerRestTransformer(ResultTransformer transformer)

• registerJsonTransformer(ResultTransformer transformer)

The returned value of a request handler which is declared as json at rule will be transformed to
standard json string, and developers can still register a customized result transformer to generate the
response by the own way. Further, even the framework will do nothing on the returned value of a
handler if which is declared on a rest rule, developer can still use "registerRestTransformer" to add
customized result transforming on a rule declared as rest.

• setDefaultMethod(HttpMethod defaultMethod)

The default matching http method for url patterns without http method specified. The default value
is GET.

Handy rules

There several add methods from UrlMappingRuleHelper which can be used to add new url rules.
According to the certain being called add method, different interface which is called handy rules will
be returned for further declaration. Further, all the methods of the returned handy rule interface will
return different interface according to the certain method you are calling, it is complex to describe which
interface will be returned on certain case, basically we suppose that the code auto completion function
of you editor would help you to know what you can do in the next step. All of these handy rules and their
methods can be treated as a group of DSL to help you build your own url rules for your site. We will
describe all the available methods at following regardless of which certain interface it belongs to. After
that, we will also describe the basic rule of how the returned handy rules change.

• add(String sourcePath)

• add(String sourcePath, String targetPath)

• add(HttpMethod method, String sourcePath)

• add(HttpMethod method, String sourcePath, String targetPath)

Add a new url rule. If the http method is not specified. the configured default method(see above
setDefaultMethod) will be specified by default. If you want the sourcePath is matched to all the http
methods, null can be specified. The targetPath should be a template file path or a redirect target url
string with prefix "redirect:", the part after prefix "redirect:" follows the convention of redirect string
format introduced in global redirect configuration.

• id(String id)

One added rule can be identified by a unique id.

• reMapTo(String ruleId)

Multi url patterns can be mapped to the same rule by reMapTo method. See following sample:

Asta4D User Guide

84

 rules.add("/app/", "/templates/index.html").id("index-page");

 rules.add("/app/index").reMapTo("index-page");

 rules.add("/app/handler").id("app-handler")

 .handler(LoginHandler.class)

 .handler(EchoHandler.class)

 .forward(LoginFailure.class, "/templates/error.html")

 .forward("/templates/success.html");

 rules.add("/app/ex-handler").reMapTo("app-handler").attribute("ex-handler");

In above sample, "/app/index" will be treated as same as the rule identified as "index-page" which
sourc path is "/app/". Aslo the "/app/ex-handler" will be configured as same as "/app/handler" with
its special attribute configuration "ex-handler". Special path variable and priority can be configured
to remapped rules as well.

Example 13.1 Remap the rule to a existing rule

• attribute(String attribute)

Multi attributes can be configured to a rule. The attributes can be used by global rule configurations
to add certain extra operations on certain urls which is attributed by certain attribute.

• var(String key, Object value)

Static path variables can be configured by this method, that can be accessed by context's path var
scope and also can be automatically injected to snippets or request handlers.

• handler(Object... handlerList)

Request handlers can be configured by this methods. Multi request handlers are acceptable and the
details about multi request handlers will be explained in later section.

The parameter of handler method can be arbitrary type: an instance of java.lang.Class or
an arbitrary instance. The framework explains received parameters by the implementation of
DeclareInstanceResolver configured by WebApplicationConfiguration. The default implementation
provided by framework follows the following rules to explain the declaration of request handler:

1. If an instance of java.lang.Class is specified, the instance of request handler will be created by
invoke "newInstance()" on the specified Class.

2. If a string is specified, the string will be treated as a class name and an instance of java.lang.Class
will be created by calling "Class#forName", then the instance of request handler will be created by
invoke "newInstance()" on the created Class.

3. The specified parameter will be treated as a request handler directly if it is neither a Class nor a
string. By this rule, it is interesting that we can declare an anonymous class as a request handler:

Asta4D User Guide

85

rules.add("/app/handler")

 .handler(new Object(){

 @RequestHandler

 public void handle(){

 //

 }

 });

Example 13.2
The asta4d-spring package also provides a resolver based on Spring IOC container, the request
handler instance will be retrieved by passing the specified parameter to the "Context#getBean"
method of spring container. See details of integration of Spring IOC.

• forward(String targetPath)

• forward(String targetPath, int status)

• forward(Object result, String targetPath)

• forward(Object result, String targetPath, int status)

The request will be forwarded to the target template file with specified status code. The result
parameter will be used to match the result from request handler(if there is any request handler
configured for current rule).About result matching, see details in next section.

• redirect(String targetPath)

• redirect(Object result, String targetPath)

As the same as forward, the request will be redirected(301/302) to the target path. The target path
string follows the convention of redirect string format introduced in global redirect configuration.

• json()

The result of request handler will be converted to a json string and be returned the client with MIME
type "application/json".

• rest()

This method does nothing for the current url by default, but declared as a hint that suggests the current
rule will act as a restful api and will return customized response which would be head only response
in many cases.

13.2. Request handler result process

Table of Contents

Content provider ... 86
Result transforming ... 86
Request handler chain .. 86

Asta4D User Guide

86

This section will describe some internal mechanism of how asta4d handle the result from a request
handler. Especially for the part of result transforming, which is not necessary for normal development
but can help you understand how the request handler chain works.

Content provider

Result transforming

Request handler chain

Asta4D User Guide

87

14. details of form flow
To be written.

Asta4D User Guide

88

15. i18n

15.1. message stringization

Table of Contents

I18nMessageHelper ... 88
MessagePatternRetriever ... 89
Default locale .. 89
afd:msg ... 90

Asta4D affords basic i18n support by a built-in I18nMessageHelper. I18nMessageHelper requires
a MessagePatternRetriever implementation to retrieve message by key. There is also a default
implementation JDKResourceBundleMessagePatternRetriever which uses the JDK's built-in resource
bundle mechanism.

I18nMessageHelper

I18nMessageHelper is an abstract classes which affords the basic interface for handling messages:

• getMessage(String key)

• getMessage(Locale locale, String key);

• getMessageWithDefault(String key, Object defaultPattern)

return defaultPattern#toString() if message not found

• getMessageWithDefault(Locale locale, String key, Object defaultPattern)

return defaultPattern#toString() if message not found

There are also two extended classes from I18nMessageHelper, which
afford more flexible message functionalities especially about formatting
message by given parameters. Configuration#setI18nMessageHelper can be
used to customized which helper you want to use. The default is
OrderedParamI18nMessageHelper. (I18nMessageHelperTypeAssistant#getConfiguredMappedHelper
and I18nMessageHelperTypeAssistant#getConfiguredOrderedHelper can be used to retrieve a type
safe configured helper.)

• MappedParamI18nMessageHelper

Allow format message by a given parameter map, A MappedValueFormatter is required to supply
concrete formatting style and the default is ApacheStrSubstitutorFormatter which uses StrSubstitutor
from Apache Common lang3.

• OrderedParamI18nMessageHelper(default)

Allow format message by a given parameter array. A OrderedValueFormatter is required to
supply concrete formatting style and the default is JDKMessageFormatFormatter which uses JDK's
MessageFormat to format message string.

Asta4D User Guide

89

There are several value formatter can be used by the above helpers. Notice that The
MappedParamI18nMessageHelper requires implementation of MappedValueFormatter and the
OrderedParamI18nMessageHelper requires implementation of OrderedValueFormatter.

Table 15.1. Built-in value formatters

formatter interface Description Example

ApacheStrSubstitutorFormatter(default)MappedValueFormatter Use Apache
Commons Lang's
StrSubstitutor#replace1

to format messages.
Use "{" and "}" to
represent variables
place holder.

"There are {count}
items in the {item-
name} list."

JDKMessageFormatFormatter(default)OrderedValueFormatter Use JDK's
MessageFormat#format2

to format messages.

"There are {1} items in
the {2} list."

SymbolPlaceholderFormatterOrderedValueFormatter Use JDK's
String#format3 to
format messages.

"There are %d items in
the %s list."

MessagePatternRetriever

The I18nMessageHelper requires a MessagePatternRetriever implementation to retrieve message by
key. There is a default implementation JDKResourceBundleMessagePatternRetriever which uses the
JDK's built-in resource bundle mechanism. The base name of resource bundle files can be specified
by JDKResourceBundleMessagePatternRetriever#setResourceNames which accepts a list of base
name. The configured resource bundles will be passed to JDK's ResourceBundle#getBundle(String
baseName, Locale locale, ClassLoader loader)4 to retrieve messages.

As the implementation of JDKResourceBundleMessagePatternRetriever, if the given locale is null, the
default locale decision mechanism will be performed. See the section called “Default locale”.

Further, the JDKResourceBundleMessagePatternRetriever accepts ResourceBundleFactory to allow
customize how to retrieve a resource bundle. The default is CharsetResourceBundleFactory which
allows specify the encoding of message bundle files. Another built-in implementation is the
LatinEscapingResourceBundleFactory, as the name suggests, the message files must be escaped by
JDK's standard mechanism(via native2ascii).

Default locale

The default locale will be decided by the following order and stop at the first non-null returned value.

1. Context.getCurrentThreadContext().getCurrentLocale()

1 http://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/
StrSubstitutor.html#replace(java.lang.CharSequence)
2 http://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html#format(java.lang.String, java.lang.Object...)
3 http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)
4 http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String, java.util.Locale,
java.lang.ClassLoader)

http://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/StrSubstitutor.html#replace(java.lang.CharSequence)
http://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/StrSubstitutor.html#replace(java.lang.CharSequence)
http://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String, java.util.Locale, java.lang.ClassLoader)
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String, java.util.Locale, java.lang.ClassLoader)
http://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/StrSubstitutor.html#replace(java.lang.CharSequence)
http://commons.apache.org/proper/commons-lang/javadocs/api-release/org/apache/commons/lang3/text/StrSubstitutor.html#replace(java.lang.CharSequence)
http://docs.oracle.com/javase/7/docs/api/java/text/MessageFormat.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#format(java.lang.String, java.lang.Object...)
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String, java.util.Locale, java.lang.ClassLoader)
http://docs.oracle.com/javase/7/docs/api/java/util/ResourceBundle.html#getBundle(java.lang.String, java.util.Locale, java.lang.ClassLoader)

Asta4D User Guide

90

2. Locale.getDefault()

3. Locale.ROOT

Since the Locale.getDefault() will return the local machine's locale by default, you may need to override
the default locale to ROOT at the staring of your web application.

afd:msg

"afd:msg" tag can be used to declare an i18n aware message in a template file. The basic usage is
as following:

Asta4D User Guide

91

<section>

 <article>

 <div class="panel panel-default"><div class="panel-body">

 <!-- the inner html will be treated as default message if the key is not found

 in message bundle -->

 <afd:msg id="notexistingkey" key="sample.notexistingkey" p0="parameter works

 as well.">text here to be treated as default message.{0}</afd:msg>

 </div></div>

 <div class="panel panel-default"><div class="panel-body">

 <!-- simply specify parameters on tag -->

 <afd:msg id="peoplecount" key="sample.peoplecount" p0="4">dummy text</

afd:msg>

 <afd:msg id="peoplecount" key="sample.peoplecount" p0="7" locale="ja_JP">dummy

 text</afd:msg>

 </div></div>

 <div class="panel panel-default"><div class="panel-body">

 <!-- the parameter can be rendered by snippet too -->

 <afd:snippet render="ComplicatedSnippet:setMsgParam">

 <afd:msg id="peoplecount" key="sample.peoplecount" p0="4">dummy text</

afd:msg>

 <afd:msg id="peoplecount" key="sample.peoplecount" p0="7" locale="ja_JP">dummy text</

afd:msg>

 </afd:snippet>

 </div></div>

 <div class="panel panel-default"><div class="panel-body">

 <!-- attribute started with "@" will be treated as a key -->

 <afd:msg id="weatherreport" key="sample.weatherreport" @p0="sample.weatherreport.sunny">#

#</afd:msg>

 <afd:msg id="weatherreport" key="sample.weatherreport" @p0="sample.weatherreport.sunny" locale="ja_JP">#

#</afd:msg>

 </div></div>

 <div class="panel panel-default"><div class="panel-body">

 <!-- attribute started with "#" will be treated as a sub key of current key,

 thus sample.weatherreport.sunny will be searched -->

 <afd:msg id="weatherreport" key="sample.weatherreport" #p0="rain">##</

afd:msg>

 <afd:msg id="weatherreport" key="sample.weatherreport" #p0="rain" locale="ja_JP">##</

afd:msg>

 </div></div>

 <div class="panel panel-default"><div class="panel-body">

 <!-- treat message as text -->

 <afd:msg key="sample.textUrl"></afd:msg>

 <!-- treat message as html -->

 <afd:msg key="sample.htmlUrl"></afd:msg>

 <!-- treat message as text even it begins with html: -->

 <afd:msg key="sample.escapedUrl"></afd:msg>

 </div></div>

 </article>

</section>

Asta4D User Guide

92

public Renderer setMsgParam() {

 Renderer render = Renderer.create();

 render.add("#peoplecount", "p0", 15);

 return render;

}

There are something need to be explained:

• default message

As commented in the source, the inner content of "afd:msg" will be treated as default message in case
of the message of specified key cannot be found. Note that the default message will be formatted
by specified parameters too.

This mechanism can also be used as a simple text replacing mechanism in the html template file in
case of necessity.

• parameter name

If the configured I18nMessageHelper is MappedParamI18nMessageHelper, the attribute names
of current "afd:msg" element will be treated as parameter names directly. And if the configured
I18nMessageHelper is OrderedParamI18nMessageHelper which is the default one, the attribute
names started with single "p" and following with 0-started numbers will be treated as the values of
parameter value array.

• recursive parameter

The attributes which name started with "@" or "#" will be treated as recursive message's key. The
different between "@" and "#" is that the "@" will be treated as a complete key but the "#" will be
treated as a sub key of current message key.

• parameter value

The value of attributes can be specified directly in the html template file, also can be rendered by a
snippet as in the above example.

• locale

Locale can be specified explicitly by ISO 639 locale string, if not, the default locale decision mechanism
will be performed. See the section called “Default locale”.

15.2. file search order

The built-in template resolver and static resource handler can match the target file name with awareness
of locale. The match locale will be decided by the default locale decision mechanism(See the section
called “Default locale”). After the locale is decided, for example, for a locale as Locale("fr", "CA", "UNIX")
to search a html template file "index.html", the target file will be searched by following order:

1. index_fr_CA_UNIX.html

2. index_fr_CA.html

Asta4D User Guide

93

3. index_fr.html

4. index.html

For the static resource files such as js, css, jpg, etc. will be searched by the same order as well.

Asta4D User Guide

94

16. Asta4dServlet and configuration

16.1. Asta4dServlet

All the http requests are handled by Asta4dServlet which allows developers to override several methods
to customize its actions. The web.xml would be like following:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/

javaee/web-app_2_5.xsd">

 <!-- standalone without spring -->

 <servlet>

 <servlet-name>Asta4D Servlet</servlet-name>

 <servlet-class>com.astamuse.asta4d.web.servlet.Asta4dServlet</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Asta4D Servlet</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

</web-app>

Example 16.1

The following methods can be overridden:

• createConfiguration()

Overriding this methods allows developers to configure the framework by code.

Asta4D User Guide

95

 @Override

 protected WebApplicationConfiguration createConfiguration() {

 WebApplicationConfiguration conf = super.createConfiguration();

 conf.setSnippetResolver(new DefaultSnippetResolver() {

 @Override

 protected Object createInstance(String snippetName) throws

 SnippetNotResovlableException {

 return super.createInstance("com.astamuse.asta4d.sample.snippet." +

 snippetName);

 }

 });

 conf.setUrlMappingRuleInitializer(new UrlRules());

 conf.getPageInterceptorList().add(new SamplePageInterceptor());

 return conf;

 }

Example 16.2

• service()

Developers can intercept the http request by overriding this method. The following example shows
how to rewrite the access url by adding pre request logic:

 @Override

 protected void service() throws Exception {

 WebApplicationContext context = Context.getCurrentThreadContext();

 HttpServletRequest request = context.getRequest();

 String requestURI = request.getRequestURI();

 if (requestURI.startsWith("/abc/")) {

 context.setAccessURI(requestURI.substring(5));

 }

 super.service();

 }

Example 16.3

Request time measuring can be performed too:

Asta4D User Guide

96

 @Override

 protected void service() throws Exception {

 long startTime = System.currentTimeMillis();

 try {

 super.service();

 } finally {

 long endTime = System.currentTimeMillis();

 System.out.println("request time:" + (endTime - startTime));

 }

 }

Example 16.4

• createAsta4dContext()

Overriding this methods allows developers to afford customized Context implementation.

• createConfigurationInitializer()

Overriding this methods allows developers to customize the configuration file initialization logic. See
details at next section.

16.2. Configuration file

In the previous section, we introduced that Asta4D can be configured by overriding createConfiguration()
method and we also introduced a method called createConfigurationInitializer which allows customize
the configuration file initialization logic. Asta4D allows to be configured by an extra configuration file
which will be analyzed by the created configuration initializer.

The default implementation of configuration initializer will seek the configuration file by following order:

1. Calling retrievePossibleConfigurationFileNames(Overridable) to retrieve all possible configuration file
names which could be an array of String. The default value is "asta4d.conf.properties" only.

2. Search all the possible names in classpath by order. The first found one will be used.

3. If there is no configuration file found in classpath, calling
retrieveConfigurationFileNameKey(Overridable) to get a key. The default key is "asta4d.conf".

4. Retrieve the value of key retrieve in previous step by the order as: ServletConfig, JDNI Context,
System properties.

5. If there is a value found in the previous step, open a file as configuration file by treating the found
value as a file path.

As mentioned above, the two methods of retrievePossibleConfigurationFileNames and
retrieveConfigurationFileNameKey can be overridden to customize configuration file name and the file
path can be also configured by the key "asta4d.conf" at servlet mapping configuration(ServletConfig),
JDNI configuration(JDNI context) or command line parameter(System properties).

Further, the default implementation does only support the format of configuration file as Java
standard properties file. All the configured key/value will be treated as setXXX method calling on

Asta4D User Guide

97

WebApplicationConfiguration instance. The key can be a dot split string which will be treated as
recursive property accessing on WebApplicationConfiguration instance.

urlMappingRuleInitializer=com.astamuse.asta4d.sample.UrlRules

cacheEnable=false

snippetExecutorFactory.threadName=asta4d-sample-snippet

snippetExecutorFactory.poolSize=100

listExecutorFactory.threadName=asta4d-sample-list

listExecutorFactory.poolSize=100

Example 16.5

The above configuration equals to the following source:

WebApplicationConfiguration conf = super.createConfiguration();

conf.setUrlMappingRuleInitializer(new UrlRules());

conf.setCacheEnable(false);

((DefaultExecutorServiceFactory) conf.getSnippetExecutorFactory()).setThreadName("asta4d-

sample-snippet");

((DefaultExecutorServiceFactory) conf.getSnippetExecutorFactory()).setPoolSize(100);

((DefaultExecutorServiceFactory) conf.getListExecutorFactory()).setThreadName("asta4d-

sample-list");

((DefaultExecutorServiceFactory) conf.getListExecutorFactory()).setPoolSize(100);

Example 16.6

All the configurable items can be found at JavaDoc1.

1 http://astamuse.github.io/asta4d/javadoc/0.14.5.1-SNAPSHOT/com/astamuse/asta4d/web/WebApplicationConfiguration.html

http://astamuse.github.io/asta4d/javadoc/0.14.5.1-SNAPSHOT/com/astamuse/asta4d/web/WebApplicationConfiguration.html
http://astamuse.github.io/asta4d/javadoc/0.14.5.1-SNAPSHOT/com/astamuse/asta4d/web/WebApplicationConfiguration.html

Asta4D User Guide

98

17. Integration with Spring

17.1. Integrate with Spring IOC

Asta4D can be integrated with any dependency injection mechanism. We will introduce how to integrate
with Spring IOC as example.

There is a package called asta4d-spring which supplies reference implementation to show how to
integrate a DI container to Asta4D. Firstly, as an alternative for Asta4dServlet introduced in the previous
chapter, SpringInitializableServlet can be used to initialize Spring configuration automatically. The
web.xml file should be like following:

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/

javaee/web-app_2_5.xsd">

 <!-- integrate with spring -->

 <servlet>

 <servlet-name>Asta4D Servlet</servlet-name>

 <servlet-class>com.astamuse.asta4d.misc.spring.SpringInitializableServlet</

servlet-class>

 <init-param>

 <param-name>contextConfigLocation</param-name>

 <param-value>classpath:spring/configuration.xml</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

 </servlet>

 <servlet-mapping>

 <servlet-name>Asta4D Servlet</servlet-name>

 <url-pattern>/</url-pattern>

 </servlet-mapping>

</web-app>

Example 17.1

Secondly, the WebApplicationConfiguration instance should be declared as a bean in spring with
additional Spring special configurations:

Asta4D User Guide

99

<?xml version="1.0" encoding="UTF-8"?>

 <bean id="asta4dConfiguration" class="com.astamuse.asta4d.web.WebApplicationConfiguration">

 <property name="snippetResolver">

 <bean class="com.astamuse.asta4d.misc.spring.SpringManagedSnippetResolver"/>

 </property>

 <property name="instanceResolverList">

 <list>

 <bean class="com.astamuse.asta4d.misc.spring.SpringManagedInstanceResolver"/>

 </list>

 </property>

 </bean>

The SpringManagedSnippetResolver will retrieve snippet instance from Spring container and the
SpringManagedInstanceResolver will also retrieve request handler instance from Spring container.
Further the SpringManagedSnippetResolver will treat the snippet name in html template files as bean id.

Example 17.2

The following example shows a full image of Spring's configuration for Asta4D:

Asta4D User Guide

100

<?xml version="1.0" encoding="UTF-8"?>

 <bean id="asta4dConfiguration" class="com.astamuse.asta4d.web.WebApplicationConfiguration">

 <property name="snippetResolver">

 <bean class="com.astamuse.asta4d.misc.spring.SpringManagedSnippetResolver"/>

 </property>

 <property name="instanceResolverList">

 <list>

 <bean class="com.astamuse.asta4d.misc.spring.SpringManagedInstanceResolver"/>

 </list>

 </property>

 <property name="pageInterceptorList">

 <list>

 <bean class="com.astamuse.asta4d.sample.interceptor.SamplePageInterceptor"/>

 </list>

 </property>

 <property name="snippetInvoker">

 <bean id="snippetInvoker" class="com.astamuse.asta4d.snippet.DefaultSnippetInvoker">

 <property name="snippetInterceptorList">

 <list>

 <bean class="com.astamuse.asta4d.sample.interceptor.SampleSnippetInterceptor"/>

 </list>

 </property>

 </bean>

 </property>

 <property name="urlMappingRuleInitializer">

 <bean class="com.astamuse.asta4d.sample.UrlRules"/>

 </property>

 </bean>

 <bean id="ComplicatedSnippet" class="com.astamuse.asta4d.sample.snippet.ComplicatedSnippet" scope="prototype"/

>

 <bean id="FormSnippet" class="com.astamuse.asta4d.sample.snippet.FormSnippet" scope="prototype"/

>

 <bean id="SimpleSnippet" class="com.astamuse.asta4d.sample.snippet.SimpleSnippet" scope="prototype"/

>

 <bean id="ShowCodeSnippet" class="com.astamuse.asta4d.sample.snippet.ShowCodeSnippet" scope="prototype"/

>

 <bean class="com.astamuse.asta4d.sample.handler.LoginHandler"/>

Note that Asta4D always treats snippet instance as singleton per request for field injection on snippet,
so the scope of snippet beans should be "prototype" basically except there is no field injection in snippet
implementation. For the request handlers, "prototype" is not necessary since there is no field injection
on request handler.

Example 17.3

Asta4D User Guide

101

17.2. Integrate with Spring MVC

Asta4D's template engine can be integrated to Spring MVC as view solution too. The following
configuration shows how:

 <bean class="com.astamuse.asta4d.misc.spring.mvc.Asta4dTemplateInitializer"/>

 <bean class="com.astamuse.asta4d.misc.spring.mvc.SpringWebPageViewResolver"/>

Example 17.4

	Asta4D Framework User Guide
	Table of Contents
	Part I. Introduction
	1. Overview
	1.1 Why Asta4D
	1.2 How Asta4D helps us
	1.3 What does the name of "Asta4D" mean

	Part II. User Guide
	2. Flexible template
	2.1 Inheritable template
	2.2 Parametrized embedding

	3. Renderer: easy to use, secure, testable
	3.1 Split rendering logic from template
	3.2 Render data to page
	3.3 Immune from cross-site hole
	3.4 Test your rendering logic

	4. View first URL mapping and variable injection
	4.1 View first
	4.2 The grammer of URL rule and path variable
	4.3 Variable Injection

	5. Side effect and request handler
	5.1 The role with responsibility to http request: Request Handler
	5.2 Side effect of system operations
	5.3 Isolate side effect and multi thread rendering

	6. Impement request handler and url mapping
	6.1 @RequestHandler
	6.2 delcare url rule for request handler
	6.3 Default request handler
	6.4 Global forward/redirect

	7. Advanced usage of request handler
	7.1. Advanced MVC architecture
	7.2. Normalize page url patterns
	7.3. Restful and ajax
	7.4. Handle static resouce files
	7.5. Handle generic path template files

	8. Built in form flow
	8.1. Startup
	Form and form field
	Form handler
	Brief of BasicFormFlowHandlerTrait and FormProcessData
	built-in flows
	Implement a real form flow handler

	HTML template of form
	Form snippet
	Cascade form POJO and array field

	8.2. Advanced
	Validation
	Message rendering
	Customize form field annotation
	A sample of defining a new flow rule

	9. Best practice
	9.1. Division of responsibilities between request handler and snippet
	Do update by request handler
	Normalize page condition by request handler
	The URL of current page represents the unique resource id of an entity(resource)
	The URL of current page represents a search condition which can be used to retrieve a list of entities(resources)

	9.2. Common usage of form flow
	9.3. The best way of implementing a snippet
	Perform queries as simple as possible
	Make use of ParallelRowRender
	Cache your data
	Avoid duplicated query
	Prepare snippet instance(set default value) by InitializableSnippet
	"x-" convention selector
	Remove contents rather than add contents for conditional rendering

	Part III. Reference
	10. Details of Template
	10.1. Supported tags
	afd:extension
	afd:block
	afd:embed
	afd:snippet
	afd:group
	afd:comment
	afd:msg

	10.2. Additional

	11. Details of snippet class
	11.1. Rendering APIs
	Create and add Renderer instance
	CSS Selector
	Render text
	Render DOM attribution
	Clear an Element
	Render raw Element
	Arbitrary rendering for an Element
	Recursive rendering
	Debug renderer
	Missing selector warning
	List rendering

	11.2. Other things about snippet and rendering
	Nested snippet
	InitializableSnippet
	Component rendering
	SnippetInterceptor
	SnippetExtractor
	SnippetResolver
	SnippetInvoker

	12. Variable injection
	12.1. Context
	Context/WebApplicationContext
	Scope
	ContextBindData

	12.2. Injection
	@ContextData
	@ContextDataSet
	ContextDataFinder
	DataConvertor
	ContextDataHolder

	13. URL rule
	13.1. Rule apis
	UrlMappingRuleInitializer
	Handy rules

	13.2. Request handler result process
	Content provider
	Result transforming
	Request handler chain

	14. details of form flow
	15. i18n
	15.1. message stringization
	I18nMessageHelper
	MessagePatternRetriever
	Default locale
	afd:msg

	15.2. file search order

	16. Asta4dServlet and configuration
	16.1. Asta4dServlet
	16.2. Configuration file

	17. Integration with Spring
	17.1. Integrate with Spring IOC
	17.2. Integrate with Spring MVC

